This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078951 #16 Feb 21 2025 06:17:53 %S A078951 3299,5099,6359,19469,30089,53609,63689,71339,77549,80909,105359, %T A078951 119549,152939,186869,292469,302969,344249,348239,408209,415949, %U A078951 652739,707669,737039,792689,818339,831539,852749,886979,910199,974969,1072829,1152629,1290629,1368329 %N A078951 Primes p such that the differences between the 5 consecutive primes starting with p are (2,6,6,6). %C A078951 Equivalently, primes p such that p, p+2, p+8, p+14 and p+20 are consecutive primes. %H A078951 Amiram Eldar, <a href="/A078951/b078951.txt">Table of n, a(n) for n = 1..10000</a> %F A078951 a(n) == 29 (mod 30). - _Amiram Eldar_, Feb 21 2025 %e A078951 5099 is in the sequence since 5099, 5101 = 5099 + 2, 5107 = 5099 + 8, 5113 = 5099 + 14 and 5119 = 5099 + 20 are consecutive primes. %t A078951 Select[Partition[Prime[Range[50000]], 5, 1], Differences[#] == {2, 6, 6, 6} &][[;;, 1]] (* _Amiram Eldar_, Feb 21 2025 *) %o A078951 (PARI) list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 2 && p3 - p2 == 6 && p4 - p3 == 6 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ _Amiram Eldar_, Feb 21 2025 %Y A078951 Subsequence of A078849. - _R. J. Mathar_, May 06 2017 %Y A078951 Cf. A001223, A078866, A078867, A078946-A078971, A022006, A022007. %K A078951 nonn %O A078951 1,1 %A A078951 _Labos Elemer_, Dec 19 2002 %E A078951 Edited by _Dean Hickerson_, Dec 20 2002