A078953 Primes p such that the differences between the 5 consecutive primes starting with p are (4,2,6,4).
67, 2377, 21487, 31177, 65167, 67927, 81547, 139297, 166597, 178597, 185527, 305017, 305407, 321817, 341947, 390487, 427417, 448867, 547357, 600877, 635347, 668527, 693727, 697507, 752287, 764887, 783787, 812347, 819487, 877867, 1196857, 1229197, 1262617, 1279177
Offset: 1
Keywords
Examples
67 is in the sequence since 67, 71 = 67 + 4, 73 = 67 + 6, 79 = 67 + 12 and 83 = 67 + 16 are consecutive primes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from R. J. Mathar)
Crossrefs
Programs
-
Mathematica
Select[Partition[Prime[Range[50000]], 5, 1], Differences[#] == {4,2,6,4} &][[;;, 1]] (* Amiram Eldar, Feb 21 2025 *)
-
PARI
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 4 && p3 - p2 == 2 && p4 - p3 == 6 && p5 - p4 == 4, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
Formula
a(n) == 7 (mod 30). - Amiram Eldar, Feb 21 2025
Extensions
Edited by Dean Hickerson, Dec 20 2002
Comments