This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078954 #19 Feb 21 2025 06:12:38 %S A078954 1597,3907,12097,12907,38317,58897,65827,90007,90187,112237,129277, %T A078954 134077,140407,176317,204427,336757,374977,390097,394717,435637, %U A078954 486667,538147,543997,588937,618577,678637,702337,922627,990277,996157,1086247,1248337,1326037,1348537 %N A078954 Primes p such that the differences between the 5 consecutive primes starting with p are (4,6,2,4). %C A078954 Equivalently, primes p such that p, p+4, p+10, p+12 and p+16 are consecutive primes. %H A078954 Amiram Eldar, <a href="/A078954/b078954.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..500 from R. J. Mathar) %F A078954 a(n) == 7 (mod 30). - _Amiram Eldar_, Feb 21 2025 %e A078954 90007 is in the sequence since 90007, 90011 = 90007 + 4, 90017 = 90007 + 10, 90019 = 90007 + 12 and 90023 = 90007 + 16 are consecutive primes. %t A078954 Transpose[Select[Partition[Prime[Range[85000]],5,1],Differences[#] == {4,6,2,4}&]][[1]] (* _Harvey P. Dale_, Sep 30 2012 *) %o A078954 (PARI) list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 4 && p3 - p2 == 6 && p4 - p3 == 2 && p5 - p4 == 4, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ _Amiram Eldar_, Feb 21 2025 %Y A078954 Subsequence of A078851. - _R. J. Mathar_, Feb 11 2013 %Y A078954 Cf. A001223, A078866, A078867, A078946-A078971, A022006, A022007. %K A078954 nonn %O A078954 1,1 %A A078954 _Labos Elemer_, Dec 19 2002 %E A078954 Edited by _Dean Hickerson_, Dec 20 2002