This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078957 #19 Feb 21 2025 06:23:31 %S A078957 12637,14737,15787,17467,78787,95257,104707,120997,154057,243517, %T A078957 250027,252877,351037,357667,443227,496477,501187,593497,624787, %U A078957 696607,750787,917827,949957,1003087,1025257,1104097,1109887,1260877,1279657,1457857,1517917,1565167,1654717 %N A078957 Primes p such that the differences between the 5 consecutive primes starting with p are (4,6,6,6). %C A078957 Equivalently, primes p such that p, p+4, p+10, p+16 and p+22 are consecutive primes. %H A078957 Amiram Eldar, <a href="/A078957/b078957.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harvey P. Dale) %F A078957 a(n) == 7 (mod 30). - _Amiram Eldar_, Feb 21 2025 %e A078957 15787 is in the sequence since 15787, 15791 = 15787 + 4, 15797 = 15787 + 10, 15803 = 15787 + 16 and 15809 = 15787 + 22 are consecutive primes. %t A078957 Select[Partition[Prime[Range[10^5]],5,1],Differences[#]=={4,6,6,6}&][[All,1]] (* _Harvey P. Dale_, Jun 23 2019 *) %o A078957 (PARI) list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 4 && p3 - p2 == 6 && p4 - p3 == 6 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ _Amiram Eldar_, Feb 21 2025 %Y A078957 Cf. A001223, A078866, A078867, A078946-A078969, A022006, A022007. %K A078957 nonn %O A078957 1,1 %A A078957 _Labos Elemer_, Dec 19 2002 %E A078957 Edited by _Dean Hickerson_, Dec 20 2002