This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078958 #19 Feb 22 2025 03:34:12 %S A078958 1601,3911,12101,14621,32051,68891,122021,191441,258101,259151,276581, %T A078958 278801,305471,347051,390101,394721,418331,419591,421691,470201, %U A078958 482501,509681,678641,683471,832361,844421,914351,929051,977351,997091,1043831,1074701,1104731,1224851 %N A078958 Primes p such that the differences between the 5 consecutive primes starting with p are (6,2,4,6). %C A078958 Equivalently, primes p such that p, p+6, p+8, p+12 and p+18 are consecutive primes. %H A078958 Amiram Eldar, <a href="/A078958/b078958.txt">Table of n, a(n) for n = 1..10000</a> %F A078958 a(n) == 11 (mod 30). - _Amiram Eldar_, Feb 22 2025 %e A078958 3911 is in the sequence since 3911, 3917 = 3911 + 6, 3919 = 3911 + 8, 3923 = 3911 + 12 and 3929 = 3911 + 18 are consecutive primes. %t A078958 Select[Partition[Prime[Range[82000]],5,1],Differences[#]=={6,2,4,6}&][[All,1]] (* _Harvey P. Dale_, Jul 09 2021 *) %o A078958 (PARI) list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 2 && p4 - p3 == 4 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ _Amiram Eldar_, Feb 22 2025 %Y A078958 Subsequence of A078853. - _R. J. Mathar_, May 06 2017 %Y A078958 Cf. A001223, A078866, A078867, A078946-A078971, A022006, A022007. %K A078958 nonn %O A078958 1,1 %A A078958 _Labos Elemer_, Dec 19 2002 %E A078958 Edited by _Dean Hickerson_, Dec 20 2002