cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078959 Primes p such that the differences between the 5 consecutive primes starting with p are (6,2,6,4).

This page as a plain text file.
%I A078959 #21 Feb 22 2025 03:41:24
%S A078959 23,53,263,1283,2333,5843,6563,14543,19373,32363,41603,48473,49193,
%T A078959 51413,75983,88793,106853,113153,115763,138563,150203,160073,163973,
%U A078959 204353,223823,229763,246923,284723,319673,326993,337853,338153,357653,433253,443153,460073,460973
%N A078959 Primes p such that the differences between the 5 consecutive primes starting with p are (6,2,6,4).
%C A078959 Equivalently, primes p such that p, p+6, p+8, p+14 and p+18 are consecutive primes.
%H A078959 Amiram Eldar, <a href="/A078959/b078959.txt">Table of n, a(n) for n = 1..10000</a>
%F A078959 a(n) == 23 (mod 30). - _Amiram Eldar_, Feb 22 2025
%e A078959 53 is a term since 53, 59 = 53 + 6, 61 = 53 + 8, 67 = 53 + 14 and 71 = 53 + 18 are consecutive primes.
%t A078959 l = {}; For[n = 1, n < 10^5, n++, If[Prime[n] + 6 == Prime[n + 1] \[And] Prime[n] + 8 == Prime[n + 2] \[And] Prime[n] + 14 == Prime[n + 3] \[And] Prime[n] + 18 == Prime[n + 4], AppendTo[l, Prime[n]]]]; l (* _Jake Foster_, Oct 27 2008 *)
%t A078959 Select[Partition[Prime[Range[50000]], 5, 1], Differences[#] == {6,2,6,4} &][[;;, 1]] (* _Amiram Eldar_, Feb 22 2025 *)
%o A078959 (PARI) list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 2 && p4 - p3 == 6 && p5 - p4 == 4, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ _Amiram Eldar_, Feb 22 2025
%Y A078959 Subsequence of A078854. - _R. J. Mathar_, May 06 2017
%Y A078959 Cf. A001223, A078866, A078867, A078946-A078971, A022006, A022007.
%K A078959 nonn
%O A078959 1,1
%A A078959 _Labos Elemer_, Dec 19 2002
%E A078959 Edited by _Dean Hickerson_, Dec 20 2002