This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078961 #23 Feb 22 2025 03:41:30 %S A078961 31,1291,1861,1987,2677,4507,5641,7867,13681,17377,24097,35521,42451, %T A078961 44257,55807,80671,88651,88801,93481,110557,113011,113161,118891, %U A078961 134581,155371,163981,198817,221707,234181,266671,269377,284731,290611,313981,331537,332461,344161 %N A078961 Primes p such that the differences between the 5 consecutive primes starting with p are (6,4,2,4). %C A078961 Equivalently, primes p such that p, p+6, p+10, p+12 and p+16 are consecutive primes. %H A078961 Amiram Eldar, <a href="/A078961/b078961.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harvey P. Dale) %F A078961 From _Amiram Eldar_, Feb 22 2025: (Start) %F A078961 a(n) == 1 (mod 6). %F A078961 a(n) == 1 or 7 (mod 30). (End) %e A078961 31 is a term since 31, 37 = 31 + 6, 41 = 31 + 10, 43 = 31 + 12 and 47 = 31 + 16 are consecutive primes. %t A078961 Transpose[Select[Partition[Prime[Range[26000]],5,1],Differences[#]=={6,4,2,4}&]][[1]] (* _Harvey P. Dale_, Aug 26 2014 *) %o A078961 (PARI) list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 4 && p4 - p3 == 2 && p5 - p4 == 4, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ _Amiram Eldar_, Feb 22 2025 %Y A078961 Subsequence of A078855. - _R. J. Mathar_, May 06 2017 %Y A078961 Cf. A001223, A078866, A078867, A078946-A078971, A022006, A022007. %K A078961 nonn %O A078961 1,1 %A A078961 _Labos Elemer_, Dec 19 2002 %E A078961 Edited by _Dean Hickerson_, Dec 20 2002