This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078962 #17 Feb 22 2025 03:39:28 %S A078962 61,2371,5431,11821,21481,37561,50581,69991,124291,126481,139291, %T A078962 223831,230761,268771,272341,275911,305401,363361,365461,388471, %U A078962 498391,516151,556261,561091,585031,752281,776551,783781,812341,832621,911161,942031,950221,1030021,1108561 %N A078962 Primes p such that the differences between the 5 consecutive primes starting with p are (6,4,2,6). %C A078962 Equivalently, primes p such that p, p+6, p+10, p+12 and p+18 are consecutive primes. %H A078962 Amiram Eldar, <a href="/A078962/b078962.txt">Table of n, a(n) for n = 1..10000</a> %F A078962 a(n) == 1 (mod 30). - _Amiram Eldar_, Feb 22 2025 %e A078962 61 is in the sequence since 61, 67 = 61 + 6, 71 = 61 + 10, 73 = 61 + 12 and 79 = 61 + 18 are consecutive primes. %t A078962 Select[Partition[Prime[Range[50000]], 5, 1], Differences[#] == {6,4,2,6} &][[;;, 1]] (* _Amiram Eldar_, Feb 22 2025 *) %o A078962 (PARI) list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 4 && p4 - p3 == 2 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ _Amiram Eldar_, Feb 22 2025 %Y A078962 Subsequence of A078855. - _R. J. Mathar_, May 06 2017 %Y A078962 Cf. A001223, A078866, A078867, A078946-A078971, A022006, A022007. %K A078962 nonn %O A078962 1,1 %A A078962 _Labos Elemer_, Dec 19 2002 %E A078962 Edited by _Dean Hickerson_, Dec 20 2002