This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078963 #26 Feb 22 2025 03:39:06 %S A078963 3313,4993,5851,9613,17971,23011,32353,36913,45121,51421,53881,54403, %T A078963 59611,76243,90001,91951,127591,130633,131431,134353,140401,142963, %U A078963 174061,229753,246913,267661,303361,311551,321313,340111,386143,435553,465061,514513,532993,618571 %N A078963 Primes p such that the differences between the 5 consecutive primes starting with p are (6,4,6,2). %C A078963 Equivalently, primes p such that p, p+6, p+10, p+16 and p+18 are consecutive primes. %H A078963 Amiram Eldar, <a href="/A078963/b078963.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Robert Israel) %F A078963 From _Amiram Eldar_, Feb 22 2025: (Start) %F A078963 a(n) == 1 (mod 6). %F A078963 a(n) == 1 or 13 (mod 30). (End) %e A078963 23011 is in the sequence since 23011, 23017 = 23011 + 6, 23021 = 23011 + 10, 23027 = 23011 + 16 and 23029 = 23011 + 18 are consecutive primes. %p A078963 L:= [2,3,5,7,11]: %p A078963 count:= 0: Res:= NULL: %p A078963 while count < 50 do %p A078963 L:= [op(L[2..5]),nextprime(L[5])]; %p A078963 if L - [L[1]$5] = [0,6,10,16,18] then %p A078963 count:= count+1; %p A078963 Res:= Res, L[1]; %p A078963 fi %p A078963 od: %p A078963 Res; # _Robert Israel_, Jun 04 2018 %t A078963 Transpose[Select[Partition[Prime[Range[50000]],5,1],Differences[#]=={6,4,6,2}&]][[1]] (* _Harvey P. Dale_, Mar 04 2011 *) %o A078963 (PARI) list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 4 && p4 - p3 == 6 && p5 - p4 == 2, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ _Amiram Eldar_, Feb 22 2025 %Y A078963 Subsequence of A078856. - _R. J. Mathar_, May 06 2017 %Y A078963 Cf. A001223, A078866, A078867, A078946-A078971, A022006, A022007. %K A078963 nonn %O A078963 1,1 %A A078963 _Labos Elemer_, Dec 19 2002 %E A078963 Edited by _Dean Hickerson_, Dec 20 2002