This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078964 #15 Feb 22 2025 03:36:58 %S A078964 157,4441,6961,8731,14731,16411,16921,20107,25447,39097,47287,47491, %T A078964 60601,78157,78781,84121,92347,104701,114067,115321,128467,142537, %U A078964 183571,186097,194707,196171,253417,279121,286477,297607,307267,327001,350437,351031,354307,357661 %N A078964 Primes p such that the differences between the 5 consecutive primes starting with p are (6,4,6,6). %C A078964 Equivalently, primes p such that p, p+6, p+10, p+16 and p+22 are consecutive primes. %H A078964 Amiram Eldar, <a href="/A078964/b078964.txt">Table of n, a(n) for n = 1..10000</a> %F A078964 From _Amiram Eldar_, Feb 22 2025: (Start) %F A078964 a(n) == 1 (mod 6). %F A078964 a(n) == 1 or 7 (mod 30). (End) %e A078964 157 is in the sequence since 157, 163 = 157 + 6, 167 = 157 + 10, 173 = 157 + 16 and 179 = 157 + 22 are consecutive primes. %t A078964 Select[Partition[Prime[Range[50000]], 5, 1], Differences[#] == {6,4,6,6} &][[;;, 1]] (* _Amiram Eldar_, Feb 22 2025 *) %o A078964 (PARI) list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 4 && p4 - p3 == 6 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ _Amiram Eldar_, Feb 22 2025 %Y A078964 Subsequence of A078856. - _R. J. Mathar_, May 06 2017 %Y A078964 Cf. A001223, A078866, A078867, A078946-A078971, A022006, A022007. %K A078964 nonn %O A078964 1,1 %A A078964 _Labos Elemer_, Dec 19 2002 %E A078964 Edited by _Dean Hickerson_, Dec 20 2002