This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078965 #17 Feb 22 2025 03:36:42 %S A078965 47,257,557,587,1217,4007,6257,10847,14537,17477,19457,26717,41597, %T A078965 51407,84047,94427,101267,115757,131927,150077,150197,154067,169307, %U A078965 179807,185057,193367,206807,250037,267887,275147,290027,302567,344237,408197,428027,442817,443147 %N A078965 Primes p such that the differences between the 5 consecutive primes starting with p are (6,6,2,6). %C A078965 Equivalently, primes p such that p, p+6, p+12, p+14 and p+20 are consecutive primes. %H A078965 Amiram Eldar, <a href="/A078965/b078965.txt">Table of n, a(n) for n = 1..10000</a> %F A078965 a(n) == 17 (mod 30). - _Amiram Eldar_, Feb 22 2025 %e A078965 257 is in the sequence since 257, 263 = 257 + 6, 269 = 257 + 12, 271 = 257 + 14 and 277 = 257 + 20 are consecutive primes. %t A078965 Select[Partition[Prime[Range[50000]], 5, 1], Differences[#] == {6,6,2,6} &][[;;, 1]] (* _Amiram Eldar_, Feb 22 2025 *) %o A078965 (PARI) list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 6 && p4 - p3 == 2 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ _Amiram Eldar_, Feb 22 2025 %Y A078965 Subsequence of A078857. - _R. J. Mathar_, May 06 2017 %Y A078965 Cf. A001223, A078866, A078867, A078946-A078971, A022006, A022007. %K A078965 nonn %O A078965 1,1 %A A078965 _Labos Elemer_, Dec 19 2002 %E A078965 Edited by _Dean Hickerson_, Dec 20 2002