This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078969 #16 Feb 22 2025 03:34:45 %S A078969 3301,15901,18211,30091,53611,71341,77551,80911,89101,120811,252151, %T A078969 285451,292471,294781,344251,601801,616501,744811,792691,809821, %U A078969 908521,912391,1152631,1154221,1279801,1376491,1398031,1455361,1464271,1500511,1503031,1555111,1594261 %N A078969 Primes p such that the differences between the 5 consecutive primes starting with p are (6,6,6,4). %C A078969 Equivalently, primes p such that p, p+6, p+12, p+18 and p+22 are consecutive primes. %H A078969 Amiram Eldar, <a href="/A078969/b078969.txt">Table of n, a(n) for n = 1..10000</a> %F A078969 a(n) == 1 (mod 30). - _Amiram Eldar_, Feb 22 2025 %e A078969 30091 is in the sequence since 30091, 30097 = 30091 + 6, 30103 = 30091 + 12, 30109 = 30091 + 18 and 30113 = 30091 + 22 are consecutive primes. %t A078969 Select[Partition[Prime[Range[150000]], 5, 1], Differences[#] == {6,6,6,4} &][[;;, 1]] (* _Amiram Eldar_, Feb 22 2025 *) %o A078969 (PARI) list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 6 && p4 - p3 == 6 && p5 - p4 == 4, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ _Amiram Eldar_, Feb 22 2025 %Y A078969 Subsequence of A033451. - _R. J. Mathar_, May 06 2017 %Y A078969 Cf. A001223, A078866, A078867, A078946-A078971, A022006, A022007. %K A078969 nonn %O A078969 1,1 %A A078969 _Labos Elemer_, Dec 19 2002 %E A078969 Edited by _Dean Hickerson_, Dec 20 2002