This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078996 #22 Jul 09 2017 21:28:20 %S A078996 -1,-1,1,1,2,-1,-2,1,1,3,0,-5,0,3,-1,1,4,2,-8,-5,8,2,-4,1,1,5,5,-10, %T A078996 -15,11,15,-10,-5,5,-1,1,6,9,-10,-30,6,41,-6,-30,10,9,-6,1,1,7,14,-7, %U A078996 -49,-14,77,29,-77,-14,49,-7,-14,7,-1,1,8,20,0,-70,-56,112,120,-125,-120,112,56,-70,0,20,-8,1 %N A078996 Triangle read by rows: let f(x) = x/(1-x-x^2); n-th row gives coefficients of denominator polynomial of n-th derivative f(x)^(n), with highest powers first, for n >= 0. %F A078996 f(x)^(n), for n=0, 1, 2, 3, 4, ..., where f(x)= x/(1-x-x^2). %F A078996 G.f.: G(0)/(2*x) - 1/x - 2 - 2*x + 2*x^2 , where G(k)= 1 + 1/( 1 - (1+x-x^2)*x^(2*k+1)/((1+x-x^2)*x^(2*k+1) + 1/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jul 06 2013 %e A078996 Triangle begins: %e A078996 -1, -1, 1; %e A078996 1, 2, -1, -2, 1; %e A078996 1, 3, 0, -5, 0, 3, -1; %e A078996 ... %Y A078996 See A084610 for another version of this triangle. %K A078996 sign,tabf %O A078996 0,5 %A A078996 _Mohammad K. Azarian_, Jan 12 2003 %E A078996 Edited by _N. J. A. Sloane_, Jan 15 2011