This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A079025 #30 Dec 06 2019 06:59:58 %S A079025 1,1,1,2,3,2,3,6,6,3,5,12,16,12,5,7,20,32,32,20,7,11,35,65,79,65,35, %T A079025 11,15,54,113,160,160,113,54,15,22,86,199,318,371,318,199,86,22,30, %U A079025 128,323,573,756,756,573,323,128,30,42,192,523,1013,1485,1683,1485,1013,523,192,42 %N A079025 Triangular array read by rows: column sums of frequency distributions associated with number of divisors of least prime signatures. %C A079025 Row sums of the triangular table is sequence A074141. The left column and the main diagonal are the partition numbers A000041. %C A079025 T(n,k) is the total number of divisors d of m (counted with multiplicity), such that the prime signature of d is a partition of k and m runs through the set of least numbers whose prime signature is a partition of n. - _Alois P. Heinz_, Aug 23 2019 %H A079025 Alois P. Heinz, <a href="/A079025/b079025.txt">Rows n = 0..200, flattened</a> %e A079025 The seven least integers associated with prime signatures 5, 41, 32, 311, 221, 2111, 11111 (partitions of 5) are 32, 48, 72, 120, 180, 420 and 2310 (see A036035). The corresponding numbers of divisors 6, 10, 12, 16, 18, 24 and 32 (see A074139) can be refined with the following frequency distributions D(p,s), which counts how many divisors of the entry of A036035 have a sum of prime exponents s, 0<=s<=n: %e A079025 1 1 1 1 1 1 %e A079025 1 2 2 2 2 1 %e A079025 1 2 3 3 2 1 %e A079025 1 3 4 4 3 1 %e A079025 1 3 5 5 3 1 %e A079025 1 4 7 7 4 1 %e A079025 1 5 10 10 5 1 , therefore the column sums are: %e A079025 7 20 32 32 20 7 , which is row 5 of the triangle. %e A079025 Triangle T(n,k) begins: %e A079025 1 %e A079025 1 1 %e A079025 2 3 2 %e A079025 3 6 6 3 %e A079025 5 12 16 12 5 %e A079025 7 20 32 32 20 7 %e A079025 11 35 65 79 65 35 11 %e A079025 15 54 113 160 160 113 54 15 %e A079025 22 86 199 318 371 318 199 86 22 %e A079025 30 128 323 573 756 756 573 323 128 30 %e A079025 42 192 523 1013 1485 1683 1485 1013 523 192 42 %e A079025 56 275 803 1683 2701 3405 3405 2701 1683 803 275 56 %e A079025 77 399 1237 2776 4822 6662 7413 6662 4822 2776 1237 399 77 %e A079025 101 556 1826 4366 8144 12205 14901 14901 12205 8144 4366 1826 556 101 %e A079025 ... %p A079025 A079025 := proc(n,k) %p A079025 local psig ,d,a; %p A079025 a := 0 ; %p A079025 for psig in A036035_row(n) do %p A079025 for d in numtheory[divisors](psig) do %p A079025 if numtheory[bigomega](d) = k then %p A079025 a := a+1 ; %p A079025 end if: %p A079025 end do: %p A079025 end do: %p A079025 a ; %p A079025 end proc: %p A079025 for n from 0 to 13 do %p A079025 for k from 0 to n do %p A079025 printf("%d ",A079025(n,k)) ; %p A079025 end do: %p A079025 printf("\n") ; %p A079025 end do: # _R. J. Mathar_, Aug 28 2018 %p A079025 # second Maple program: %p A079025 b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, (x+1)^n, %p A079025 b(n, i-1) +factor((x^(i+1)-1)/(x-1))*b(n-i, min(n-i, i)))) %p A079025 end: %p A079025 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)): %p A079025 seq(T(n), n=0..12); # _Alois P. Heinz_, Aug 22 2019 %t A079025 b[n_, i_] := b[n, i] = Expand[If[n == 0 || i == 1, (x + 1)^n, b[n, i - 1] + Factor[(x^(i + 1) - 1)/(x - 1)]*b[n - i, Min[n - i, i]]]]; %t A079025 T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]]; %t A079025 Table[T[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Dec 06 2019, after _Alois P. Heinz_ *) %Y A079025 Columns k=0-10 give: A000041, A006128, A309691, A309693, A309919, A309920, A309921, A309922, A309923, A309924, A309925. %Y A079025 Row sums give A074141. %Y A079025 T(2n,n) gives A309915. %Y A079025 Cf. A036035, A074139, A079474, A087443. %K A079025 easy,nonn,tabl %O A079025 0,4 %A A079025 _Alford Arnold_, Feb 01 2003