cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079057 a(n) = Sum_{k=1..n} bigomega(tau(k)).

This page as a plain text file.
%I A079057 #25 Feb 11 2024 02:41:10
%S A079057 0,1,2,3,4,6,7,9,10,12,13,15,16,18,20,21,22,24,25,27,29,31,32,35,36,
%T A079057 38,40,42,43,46,47,49,51,53,55,57,58,60,62,65,66,69,70,72,74,76,77,79,
%U A079057 80,82,84,86,87,90,92,95,97,99,100,103,104,106,108,109,111,114,115,117,119
%N A079057 a(n) = Sum_{k=1..n} bigomega(tau(k)).
%D A079057 József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter V, page 164.
%H A079057 Harvey P. Dale, <a href="/A079057/b079057.txt">Table of n, a(n) for n = 1..1000</a>
%H A079057 E. Heppner, <a href="https://eudml.org/doc/151410">Über die Iteration von Teilerfunktionen</a>, Journal für die reine und angewandte Mathematik, Vol. 265 (1974), pp. 176-182.
%H A079057 G. J. Rieger, <a href="https://doi.org/10.1007/BF01303534">Über einige arithmetische Summen</a>, Manuscripta Mathematica, Vol. 7 (1972), pp. 23-34.
%F A079057 a(n) = n*log(log(n)) + O(n).
%F A079057 a(n) = b * n * log(log(n)) +  Sum_{k=0..floor(sqrt(n))} b_k * n/log(n)^k  + O(n * exp(-c*sqrt(log(n)))), where b, b_k and c are constants (Heppner, 1974). b = 1 and b_0 = B + C, where B is Mertens's constant (A077761), C = Sum_{k>=2} A076191(k)*P(k) = 0.12861146810484151346..., and P(s) is the prime zeta function. - _Amiram Eldar_, Jan 15 2024 and Feb 11 2024
%t A079057 Accumulate[PrimeOmega[DivisorSigma[0,Range[70]]]] (* _Harvey P. Dale_, Dec 05 2013 *)
%o A079057 (PARI) a(n)=sum(i=1,n,bigomega(numdiv(i)))
%Y A079057 Partial sums of A058061.
%Y A079057 Cf. A000005, A001222, A076191, A077761.
%K A079057 nonn,easy
%O A079057 1,3
%A A079057 _Benoit Cloitre_, Feb 02 2003