This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A079138 #12 Sep 08 2022 08:45:08 %S A079138 7,11,23,43,71,107,151,263,331,491,683,907,1031,1163,1303,1451,1607, %T A079138 2311,2711,3371,3607,3851,4363,5483,5783,6091,10007,11243,12107,13003, %U A079138 13463,13931,14407,14891,15383,17431,18503,19051,20743,21323,21911 %N A079138 Primes of the form k^2 + 7. %C A079138 The sum of the reciprocals converges to 0.350314... Are there infinitely many primes of this form? %H A079138 Vincenzo Librandi, <a href="/A079138/b079138.txt">Table of n, a(n) for n = 1..6800</a> %t A079138 Intersection[Table[n^2+7,{n,0,10^2}],Prime[Range[9*10^3]]] ...or... For[i=7,i<=7,a={};Do[If[PrimeQ[n^2+i],AppendTo[a,n^2+i]],{n,0,100}];Print["n^2+",i,",",a];i++ ] (* _Vladimir Joseph Stephan Orlovsky_, Apr 29 2008 *) %t A079138 Select[Table[n^2+7,{n,0,70000}],PrimeQ] (* _Vincenzo Librandi_, Nov 30 2011 *) %o A079138 (PARI) nsqpm(n) = {sr=0; forstep(x=0,n,2, y = x*x+7; if(isprime(y), print1(y" "); sr+=1.0/y; ); ); print(); print(sr); } \\ Primes of the form n^2 + 7 and the sum of the reciprocals. %o A079138 (Magma) [a: n in [0..700] | IsPrime(a) where a is n^2+7]; // _Vincenzo Librandi_, Nov 30 2011 %K A079138 easy,nonn %O A079138 1,1 %A A079138 _Cino Hilliard_, Dec 26 2002