This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A079156 #14 Feb 16 2025 08:32:48 %S A079156 10,67,396,2201,11870,62571,324896,1665349,8457890,42605267,213305636, %T A079156 1061939193,5263752278,25984214383,127848694424,627084275649, %U A079156 3067923454498 %N A079156 Sum of end-to-end Manhattan distances over all self-avoiding n-step walks on cubic lattice. Numerator of mean Manhattan displacement s(n)=a(n)/A078717. %C A079156 A conjectured asymptotic behavior for the mean Manhattan displacement is shown in a diagram lim n-> infinity a(n)/(A078717(n)*n^nu)=c, for some values of nu near 0.59 at Pfoertner link %D A079156 See under A001412 %H A079156 Hugo Pfoertner, <a href="http://www.randomwalk.de/stw3d.html">Results for the 3-dimensional Self-Trapping Random Walk</a> %H A079156 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Self-AvoidingWalkConnectiveConstant.html">Self-Avoiding Walk Connective Constant</a> %F A079156 a(n)= sum l=1, A078717(n) (|i_l| + |j_l| + |k_l|) where (i_l, j_l, k_l) are the end points of all different self-avoiding n-step walks starting at (0, 0, 0) %e A079156 a(2)=10 because the A078717(2)=5 different self-avoiding 2-step walks end at (1,0,-1),(1,0,1),(1,-1,0),(1,1,0),(2,0,0)->d=2. a(2)=5*2=10. See also "Distribution of end point distance" at Pfoertner link %o A079156 (Fortran) c Program for distance counting available at Pfoertner link. %Y A079156 Cf. A001412, A078717, A078605 (corresponding square displacement). %K A079156 more,nonn %O A079156 2,1 %A A079156 _Hugo Pfoertner_, Dec 29 2002