cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079250 Even numbers in A079000.

This page as a plain text file.
%I A079250 #11 Sep 04 2018 14:32:33
%S A079250 4,6,8,16,18,20,34,36,38,40,42,44,70,72,74,76,78,80,82,84,86,88,90,92,
%T A079250 142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,
%U A079250 176,178,180,182,184,186,188,286,288,290,292,294,296,298,300
%N A079250 Even numbers in A079000.
%H A079250 B. Cloitre, N. J. A. Sloane and M. J. Vandermast, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL6/Cloitre/cloitre2.html">Numerical analogues of Aronson's sequence</a>, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
%H A079250 B. Cloitre, N. J. A. Sloane and M. J. Vandermast, <a href="http://arXiv.org/abs/math.NT/0305308">Numerical analogues of Aronson's sequence</a> (math.NT/0305308)
%F A079250 {4, 6, 8} and Union_{k >=1} {2i : 9*2^(k-1)-1 <= i <= 3*2^(k+1)-2 }.
%t A079250 (* b = A079000 *) b[1] = 1; b[n_] := (k = Floor[Log[2, (n + 3)/6]]; j = n - (9*2^k - 3); 12*2^k - 3 + 3*j/2 + Abs[j]/2);
%t A079250 Select[Array[b, 300], EvenQ] (* _Jean-François Alcover_, Sep 04 2018 *)
%K A079250 nonn
%O A079250 1,1
%A A079250 _N. J. A. Sloane_, Feb 04 2003