A079268 Triangle read by rows: d(n,k) = number of decreasing labeled trees with n nodes and largest leaf <= k, for 1 <= k <= n.
1, 1, 1, 1, 3, 3, 1, 7, 15, 15, 1, 15, 57, 105, 105, 1, 31, 195, 561, 945, 945, 1, 63, 633, 2685, 6555, 10395, 10395, 1, 127, 1995, 12105, 40725, 89055, 135135, 135135, 1, 255, 6177, 52605, 237555, 684495, 1381905, 2027025, 2027025, 1, 511, 18915, 223161
Offset: 1
Examples
Triangle begins 1, 1, 1, 1, 3, 3, 1, 7, 15, 15, 1, 15, 57, 105, 105, 1, 31, 195, 561, 945, 945, 1, 63, 633, 2685, 6555, 10395, 10395, ...
Links
- J. L. Martin, The slopes determined by n points in the plane.
- Martin, Jeremy L. The slopes determined by n points in the plane. Duke Math. J. 131 (2006), no. 1, 119-165 (also arXiv math.AG/0302106, but beware errors).
Crossrefs
Formula
Recurrence: d(n, k) = 1 for n=0 or k=1, d(n, k) = 0 for n>0 and either k<0 or k>n, d(n, k) = d(n-1, k) + d(n, k-1) + Sum_{w=0..k-2, x=0..n-k-1} binomial(k-1, w) * binomial(n-k, x) * d(n-k+w-x, w+1) * d(k-w+x, k-w-1).