cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079276 Multiplicative inverse in the finite field F(prime(n)) of the product of the first n-1 primes modulo prime(n).

This page as a plain text file.
%I A079276 #15 Feb 16 2025 08:32:48
%S A079276 1,2,1,4,1,3,15,18,20,12,18,27,7,5,43,2,4,10,38,3,60,20,53,62,52,83,
%T A079276 11,30,27,49,113,63,79,25,81,143,80,121,53,142,81,52,81,150,136,40,
%U A079276 176,114,167,138,84,46,239,213,137,4,122,136,255,141,273,30,22,25,179,9,43,12
%N A079276 Multiplicative inverse in the finite field F(prime(n)) of the product of the first n-1 primes modulo prime(n).
%C A079276 a(n)=1 if and only if n-1 is in A341805. - _Jeppe Stig Nielsen_, Feb 20 2021
%H A079276 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Primorial.html">Primorial</a>
%F A079276 a(1) = 1; for n>1, a(n) = ( prime(n-1)# (mod prime(n)) )^(-1), where prime(i) is the i-th prime number, prime(i)# is the product of first i primes, x^(-1) is the multiplicative inverse in the finite field F(prime(n)).
%e A079276 a(6)=3 because 2*3*5*7*11 = 2310, 2310 == 9 (mod 13) and 9*(9^(-1)) == 9*3 == 1 (mod 13).
%p A079276 a := n -> (1/mul(ithprime(j), j=1..n-1)) mod ithprime(n);
%p A079276 seq(a(n), n=1..68); # _Peter Luschny_, Apr 13 2014
%t A079276 a[n_] := Module[{i}, Return[PowerMod[Product[Prime[i], {i, 1, n - 1}], -1, Prime[n]]]; ];
%Y A079276 Cf. A062347, A002110, A000040, A240673, A341805.
%K A079276 nonn
%O A079276 1,2
%A A079276 Valentin F. Schmid (v_schmid(AT)hotmail.com), Feb 07 2003