A079336 A repetition-resistant sequence.
0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
a(8)=1 because (0,1,1,0,0,1,0,0) has repeated segment (1,0,0) of length 3, whereas (0,1,1,0,0,1,0,1) has no repeated segment of length 3.
Links
- Clark Kimberling, Unsolved Problems and Rewards.
- Clark Kimberling, Problem 2289, Crux Mathematicorum 23 (1997) 501.
Formula
a(n+1)=0 if and only if (a(1), a(2), ..., a(n), 1), but not (a(1), a(2), ..., a(n), 0), has greater length of longest repeated segment than (a(1), a(2), ..., a(n)) has.
Comments