cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079336 A repetition-resistant sequence.

Original entry on oeis.org

0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 03 2003

Keywords

Comments

Unsolved problem: is every finite binary sequence a segment of a?

Examples

			a(8)=1 because (0,1,1,0,0,1,0,0) has repeated segment (1,0,0) of length 3, whereas (0,1,1,0,0,1,0,1) has no repeated segment of length 3.
		

Crossrefs

Formula

a(n+1)=0 if and only if (a(1), a(2), ..., a(n), 1), but not (a(1), a(2), ..., a(n), 0), has greater length of longest repeated segment than (a(1), a(2), ..., a(n)) has.