A079342 Integers k that divide LS(k), where LS is the "Look and Say" function (A045918).
1, 2, 5, 10, 22, 32, 62, 91, 183, 188, 190, 196, 258, 276, 330, 671, 710, 1130, 1210, 1570, 2644, 2998, 3292, 4214, 17055, 20035, 53015, 70315, 101010, 108947, 199245, 233606, 309665, 323232, 356421, 483405, 626262, 919191, 1743599
Offset: 1
Examples
E.g. LS(1)=11, LS(2)=12, LS(10)=1110, LS(188)=1128 etc. and in each case LS(n) is a multiple of n. 122918=0 mod 2998, so 2998 is in the sequence. But 13 == 1 mod 3, so 3 is not in the sequence.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..82 (all terms <= 10^10)
Crossrefs
Cf. A152957. - David Wasserman, Dec 15 2008
Programs
-
Maple
# Implementation by R. J. Mathar, May 08 2019: A045918 := proc(n) local a,f,pd,dgs,i ; a := [] ; f := 0 ; pd := -1 ; dgs := convert(n,base,10) ; for i from 1 to nops(dgs) do if op(-i,dgs) <> pd then if pd >= 0 then a := [op(a),f,pd] ; end if; pd := op(-i,dgs) ; f := 1 ; else f:= f+1 ; end if; end do: a := [op(a),f,pd] ; digcatL(%) ; end proc: isA079342 := proc(n) simplify( modp(A045918(n) ,n) = 0 ) ; end proc: for n from 1 to 30000 do if isA079342(n) then print(n) ; end if; end do:
-
Python
def LS(n): return int(''.join(str(len(list(g)))+k for k, g in groupby(str(n)))) def ok(n): return LS(n)%n == 0 print([k for k in range(1, 10**4) if ok(k)]) # Michael S. Branicky, Aug 28 2024
Comments