cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079487 Triangle read by rows giving Whitney numbers T(n,k) of Fibonacci lattices.

This page as a plain text file.
%I A079487 #59 Apr 04 2025 15:38:29
%S A079487 1,1,1,1,1,1,1,2,1,1,1,2,2,2,1,1,3,3,3,2,1,1,3,4,5,4,3,1,1,4,6,7,7,5,
%T A079487 3,1,1,4,7,10,11,10,7,4,1,1,5,10,14,17,16,13,8,4,1,1,5,11,18,24,26,24,
%U A079487 18,11,5,1,1,6,15,25,35,40,39,32,22,12,5,1,1
%N A079487 Triangle read by rows giving Whitney numbers T(n,k) of Fibonacci lattices.
%C A079487 Row sums are Fibonacci numbers A000045. - _Roger L. Bagula_, Oct 07 2006
%C A079487 This is the second kind of Whitney numbers, which count elements, not to be confused with the first kind, which sum Mobius functions. - _Thomas Zaslavsky_, May 07 2008
%H A079487 Giovanni Resta, <a href="/A079487/b079487.txt">Rows n=0..139 of triangle, flattened</a>
%H A079487 Robert G. Donnelly, Molly W. Dunkum, Sasha V. Malone, and Alexandra Nance, <a href="https://arxiv.org/abs/2012.14991">Symmetric Fibonaccian distributive lattices and representations of the special linear Lie algebras</a>, arXiv:2012.14991 [math.CO], 2020.
%H A079487 A. Khrabrov and K. Kokhas, <a href="http://arxiv.org/abs/1505.06309">Points on a line, shoelace and dominoes</a>, arXiv:1505.06309 [math.CO], (23-May-2015).
%H A079487 Sophie Morier-Genoud and Valentin Ovsienko, <a href="https://arxiv.org/abs/1812.00170">q-deformed rationals and q-continued fractions</a>, arXiv:1812.00170 [math.CO], 2018-2020.
%H A079487 Sophie Morier-Genoud and Valentin Ovsienko, <a href="https://arxiv.org/abs/1908.04365">On q-deformed real numbers</a>, arXiv:1908.04365 [math.QA], 2019.
%H A079487 Sophie Morier-Genoud and Valentin Ovsienko, <a href="https://hal.archives-ouvertes.fr/hal-02270545/">q-deformed rationals and q-continued fractions</a>, (2019) [math].
%H A079487 Sophie Morier-Genoud and Valentin Ovsienko, <a href="https://arxiv.org/abs/2011.10809">Quantum real numbers and q-deformed Conway-Coxeter friezes</a>, arXiv:2011.10809 [math.QA], 2020.
%H A079487 Sophie Morier-Genoud and Valentin Ovsienko, <a href="https://arxiv.org/abs/2503.23834">q-deformed rationals and irrationals</a>, arXiv:2503.23834 [math.CO], 2025. See p. 7.
%H A079487 Emanuele Munarini and Norma Zagaglia Salvi, <a href="http://dx.doi.org/10.1016/S0012-365X(02)00378-3">On the Rank Polynomial of the Lattice of Order Ideals of Fences and Crowns</a>, Discrete Mathematics 259 (2002), 163-177.
%H A079487 Valentin Ovsienko, <a href="https://amathr.org/wp-content/uploads/2023/03/QOMBINUMReview-1.pdf">Modular invariant q-deformed numbers: first steps</a>, 2023.
%F A079487 Define polynomials by: if k is odd then p(k, x) = x*p(k - 1, x) + p(k - 2, x); if k is even then: p(k, x) = p(k - 1, x) + x^2*p(k - 2, x). Triangle gives array of coefficients. - _Roger L. Bagula_, Oct 07 2006
%e A079487 Triangle begins:
%e A079487 {1},
%e A079487 {1, 1},
%e A079487 {1, 1, 1},
%e A079487 {1, 2, 1, 1},
%e A079487 {1, 2, 2, 2, 1},
%e A079487 {1, 3, 3, 3, 2, 1},
%e A079487 {1, 3, 4, 5, 4, 3, 1},
%e A079487 {1, 4, 6, 7, 7, 5, 3, 1},
%e A079487 {1, 4, 7, 10, 11, 10, 7, 4, 1},
%e A079487 {1, 5, 10, 14, 17, 16, 13, 8, 4, 1},
%e A079487 {1, 5, 11, 18, 24, 26, 24, 18, 11, 5, 1}
%t A079487 p[0, x] = 1; p[1, x] = x + 1; p[k_, x_] := p[k, x] = Expand@ If[Mod[k, 2] == 1, x*p[k - 1, x] + p[k - 2, x], p[k - 1, x] + x^2*p[k - 2, x]]; Flatten[ Table[CoefficientList[p[n, x], x], {n, 0, 10}]] (* _Roger L. Bagula_, Oct 07 2006 *)
%t A079487 T[ n_, k_] := (T[n, k] = Which[k<0 || k>n, 0, k==0, 1, True, T[n-1, k-Mod[n, 2]] + T[n-2, k-Mod[n+1, 2]*2]]); (* _Michael Somos_, Dec 12 2023 *)
%o A079487 (PARI) {T(n, k) = if(k<0 || k>n, 0, k==0, 1, T(n-1, k-(n%2)) + T(n-2, k-(n+1)%2*2))}; /* _Michael Somos_, Dec 12 2023 */
%Y A079487 Largest element in each row gives A077419.
%K A079487 nonn,tabl
%O A079487 0,8
%A A079487 _N. J. A. Sloane_, Jan 19 2003
%E A079487 Mma program editing and a(67)-a(79) from _Giovanni Resta_, May 26 2015