cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079513 Triangular array (a Riordan array) related to tennis ball problem, read by rows.

This page as a plain text file.
%I A079513 #33 Jan 17 2019 17:21:14
%S A079513 1,0,1,1,1,1,0,3,2,1,6,6,6,3,1,0,22,16,10,4,1,53,53,53,31,15,5,1,0,
%T A079513 211,158,105,52,21,6,1,554,554,554,343,185,80,28,7,1,0,2306,1752,1198,
%U A079513 644,301,116,36,8,1,6362,6362,6362,4056,2304,1106,462,161,45,9,1
%N A079513 Triangular array (a Riordan array) related to tennis ball problem, read by rows.
%C A079513 Riordan array (2/(2-x*c(x)+x*c(-x)), x*c(x)), with c(x) the g.f. of Catalan numbers (A000108). - _Ralf Stephan_, Dec 29 2013
%H A079513 G. C. Greubel, <a href="/A079513/b079513.txt">Rows n=0..100 of triangle, flattened</a>
%H A079513 D. Merlini, R. Sprugnoli and M. C. Verri, <a href="http://dx.doi.org/10.1006/jcta.2002.3273">The tennis ball problem</a>, J. Combin. Theory, A 99 (2002), 307-344 (Table A.2).
%e A079513 Triangle starts
%e A079513      1;
%e A079513      0,    1;
%e A079513      1,    1,    1;
%e A079513      0,    3,    2,    1;
%e A079513      6,    6,    6,    3,    1;
%e A079513      0,   22,   16,   10,    4,    1;
%e A079513     53,   53,   53,   31,   15,    5,   1;
%e A079513      0,  211,  158,  105,   52,   21,   6,   1;
%e A079513    554,  554,  554,  343,  185,   80,  28,   7,  1;
%e A079513      0, 2306, 1752, 1198,  644,  301, 116,  36,  8, 1;
%e A079513   6362, 6362, 6362, 4056, 2304, 1106, 462, 161, 45, 9, 1;
%t A079513 c[t_]:= (1-Sqrt[1-4*t])/(2*t); d[t_]:= (1-(1+2*t)*Sqrt[1-4*t] -(1-2*t)*Sqrt[1+4*t] +Sqrt[1-16*t^2])/(4*t^2); g[t_, r_]:= d[t]*(t*c[t])^r; Table[SeriesCoefficient[Series[g[t, k], {t, 0, n}], n], {n, 0, 10}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Jan 16 2019 *)
%Y A079513 First column is A066357 interspersed with 0's, 2nd column gives A079514.
%Y A079513 Cf. A079514, A079515, A079516, A079517, A079518, A079519, A079520, A079521.
%K A079513 nonn,tabl
%O A079513 0,8
%A A079513 _N. J. A. Sloane_, Jan 22 2003
%E A079513 Edited and more terms added by _Ralf Stephan_, Dec 29 2013