This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A079513 #33 Jan 17 2019 17:21:14 %S A079513 1,0,1,1,1,1,0,3,2,1,6,6,6,3,1,0,22,16,10,4,1,53,53,53,31,15,5,1,0, %T A079513 211,158,105,52,21,6,1,554,554,554,343,185,80,28,7,1,0,2306,1752,1198, %U A079513 644,301,116,36,8,1,6362,6362,6362,4056,2304,1106,462,161,45,9,1 %N A079513 Triangular array (a Riordan array) related to tennis ball problem, read by rows. %C A079513 Riordan array (2/(2-x*c(x)+x*c(-x)), x*c(x)), with c(x) the g.f. of Catalan numbers (A000108). - _Ralf Stephan_, Dec 29 2013 %H A079513 G. C. Greubel, <a href="/A079513/b079513.txt">Rows n=0..100 of triangle, flattened</a> %H A079513 D. Merlini, R. Sprugnoli and M. C. Verri, <a href="http://dx.doi.org/10.1006/jcta.2002.3273">The tennis ball problem</a>, J. Combin. Theory, A 99 (2002), 307-344 (Table A.2). %e A079513 Triangle starts %e A079513 1; %e A079513 0, 1; %e A079513 1, 1, 1; %e A079513 0, 3, 2, 1; %e A079513 6, 6, 6, 3, 1; %e A079513 0, 22, 16, 10, 4, 1; %e A079513 53, 53, 53, 31, 15, 5, 1; %e A079513 0, 211, 158, 105, 52, 21, 6, 1; %e A079513 554, 554, 554, 343, 185, 80, 28, 7, 1; %e A079513 0, 2306, 1752, 1198, 644, 301, 116, 36, 8, 1; %e A079513 6362, 6362, 6362, 4056, 2304, 1106, 462, 161, 45, 9, 1; %t A079513 c[t_]:= (1-Sqrt[1-4*t])/(2*t); d[t_]:= (1-(1+2*t)*Sqrt[1-4*t] -(1-2*t)*Sqrt[1+4*t] +Sqrt[1-16*t^2])/(4*t^2); g[t_, r_]:= d[t]*(t*c[t])^r; Table[SeriesCoefficient[Series[g[t, k], {t, 0, n}], n], {n, 0, 10}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Jan 16 2019 *) %Y A079513 First column is A066357 interspersed with 0's, 2nd column gives A079514. %Y A079513 Cf. A079514, A079515, A079516, A079517, A079518, A079519, A079520, A079521. %K A079513 nonn,tabl %O A079513 0,8 %A A079513 _N. J. A. Sloane_, Jan 22 2003 %E A079513 Edited and more terms added by _Ralf Stephan_, Dec 29 2013