cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079520 Triangular array related to tennis ball problem, read by rows.

This page as a plain text file.
%I A079520 #7 Jan 17 2019 17:21:20
%S A079520 0,0,1,0,1,3,0,1,4,10,0,1,5,15,31,0,1,6,21,52,105,0,1,7,28,80,185,343,
%T A079520 0,1,8,36,116,301,644,1198,0,1,9,45,161,462,1106,2304,4056,0,1,10,55,
%U A079520 216,678,1784,4088,8144,14506,0,1,11,66,282,960,2744,6832,14976,29482,50350
%N A079520 Triangular array related to tennis ball problem, read by rows.
%C A079520 Rows have been reversed.
%H A079520 G. C. Greubel, <a href="/A079520/b079520.txt">Rows n=0..100 of triangle, flattened</a>
%H A079520 D. Merlini, R. Sprugnoli and M. C. Verri, <a href="http://dx.doi.org/10.1006/jcta.2002.3273">The tennis ball problem</a>, J. Combin. Theory, A 99 (2002), 307-344. (Fig. A.3)
%F A079520 Let c, d, and g be given by: c(t) = (1-sqrt(1-4*t))/(2*t), d(t) = (1-(1+2*t)*sqrt(1-4*t) -(1- 2*t)*sqrt(1+4*t) +sqrt(1-16*t^2))/(4*t^2), and g(t, r) = d(t)*t^(r+1)*c(t)^(r+3). The rows of the triangle are calculated by the expansion of g(t, n-k) for n>=0, 0 <= k <= n. - _G. C. Greubel_, Jan 17 2019
%e A079520 0.
%e A079520 0, 1.
%e A079520 0, 1, 3.
%e A079520 0, 1, 4, 10.
%e A079520 0, 1, 5, 15, 31.
%e A079520 0, 1, 6, 21, 52, 105. ...
%t A079520 c[t_]:= (1-Sqrt[1-4*t])/(2*t); d[t_]:= (1-(1+2*t)*Sqrt[1-4*t] -(1- 2*t)*Sqrt[1+4*t] +Sqrt[1-16*t^2])/(4*t^2); g[t_, r_]:= d[t]*t^(r+1) *c[t]^(r+3); Table[SeriesCoefficient[Series[g[t, n-k], {t, 0, n}], n], {n, 0, 12}, {k, 0, n}]//Flatten  (* _G. C. Greubel_, Jan 17 2019 *)
%Y A079520 Leading diagonal gives A079522.
%Y A079520 Cf. A079513.
%K A079520 nonn,tabl
%O A079520 0,6
%A A079520 _N. J. A. Sloane_, Jan 22 2003
%E A079520 Terms a(29) onward added by _G. C. Greubel_, Jan 17 2019