cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079521 Triangular array related to tennis ball problem, read by rows.

This page as a plain text file.
%I A079521 #7 Jan 17 2019 17:21:26
%S A079521 0,1,2,3,5,4,10,16,13,6,31,47,45,25,8,105,158,145,96,41,10,343,501,
%T A079521 500,340,175,61,12,1198,1752,1673,1226,676,288,85,14,4056,5808,5898,
%U A079521 4326,2569,1205,441,113,16,14506,20868,20312,15608,9526,4836,1987,640,145,18,50350,71218,73000,55696,35448,18800,8418,3090,891,181,20
%N A079521 Triangular array related to tennis ball problem, read by rows.
%H A079521 G. C. Greubel, <a href="/A079521/b079521.txt">Rows n=0..100 of triangle, flattened</a>
%H A079521 D. Merlini, R. Sprugnoli and M. C. Verri, <a href="http://dx.doi.org/10.1006/jcta.2002.3273">The tennis ball problem</a>, J. Combin. Theory, A 99 (2002), 307-344. (Fig. A.4).
%F A079521 Let c, d, and g be given by: c(t) = (1-sqrt(1-4*t))/(2*t), d(t) = (1-(1+ 2*t)*sqrt(1-4*t) -(1-2*t)*sqrt(1+4*t) +sqrt(1-16*t^2))/(4*t^2), and
%F A079521 g(t, r) = d(t)*(t*c(t))^r*(t*c(t)^3 + 2*r*c(t)) then the rows are calculated by the expansion of g(t,k) for n>=0, 0 <= k <= n. - _G. C. Greubel_, Jan 17 2019
%e A079521 0.
%e A079521 1,   2.
%e A079521 3,   5,   4.
%e A079521 10,  16,  13,  6.
%e A079521 31,  47,  45,  25, 8.
%e A079521 105, 158, 145, 96, 41, 10. ...
%t A079521 c[t_]:= (1-Sqrt[1-4*t])/(2*t); d[t_]:= (1-(1+2*t)*Sqrt[1-4*t]-(1- 2*t)*Sqrt[1+4*t] +Sqrt[1-16*t^2])/(4*t^2); g[t_, r_]:= d[t]*(t*c[t])^r*(t*c[t]^3 +2*r*c[t]); Table[SeriesCoefficient[Series[g[t, k], {t, 0, n}], n], {n, 0, 10}, {k, 0, n}] (* _G. C. Greubel_, Jan 17 2019 *)
%Y A079521 Leading diagonal gives A079522.
%Y A079521 Cf. A079513, A079520, A079521.
%K A079521 nonn,tabl
%O A079521 0,3
%A A079521 _N. J. A. Sloane_, Jan 22 2003
%E A079521 Terms a(28) onward added by _G. C. Greubel_, Jan 17 2019