This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A079585 #70 Feb 16 2025 08:32:48 %S A079585 2,3,8,1,9,6,6,0,1,1,2,5,0,1,0,5,1,5,1,7,9,5,4,1,3,1,6,5,6,3,4,3,6,1, %T A079585 8,8,2,2,7,9,6,9,0,8,2,0,1,9,4,2,3,7,1,3,7,8,6,4,5,5,1,3,7,7,2,9,4,7, %U A079585 3,9,5,3,7,1,8,1,0,9,7,5,5,0,2,9,2,7,9,2,7,9,5,8,1,0,6,0,8,8,6,2,5,1,5,2,4 %N A079585 Decimal expansion of c = (7-sqrt(5))/2. %C A079585 c is an integer in the quadratic number field Q(sqrt(5)). - _Wolfdieter Lang_, Jan 08 2018 %C A079585 From _Amiram Eldar_, Jul 16 2021: (Start) %C A079585 Sum_{k>=0} 1/F(2^k) is sometimes called "Millin series" after D. A. Millin, a high school student at Annville, Pennsylvania, who posed in 1974 the problem of proving that it equals (7-sqrt(5))/2. This identity was in fact already known to Lucas in 1878. %C A079585 Mahler (1975) provided a false proof that this sum is transcendental. The mistake was corrected in Mahler (1976). (End) %C A079585 The name "Millin" was a misprint of "Miller", the author of the problem was Dale A. Miller. His name was corrected in the solution to the problem (1976). - _Amiram Eldar_, Feb 29 2024 %D A079585 Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences, Cambridge University Press, 2003, p. 65. %D A079585 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.2, p. 7. %D A079585 Ross Honsberger, Mathematical Gems III, Washington, DC: Math. Assoc. Amer., 1985, pp. 135-137. %D A079585 Alfred S. Posamentier and Ingmar Lehmann, [Phi], The Glorious Golden Ratio, Prometheus Books, 2011, page 75. %H A079585 Chai Wah Wu, <a href="/A079585/b079585.txt">Table of n, a(n) for n = 1..10001</a> %H A079585 I. J. Good, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/12-4/good.pdf">A Reciprocal Series of Fibonacci Numbers</a>, Fib. Quart., Vol. 12, No. 4 (1974), p. 346. %H A079585 History of Science and Mathematics StackExchange, <a href="https://hsm.stackexchange.com/questions/14434/who-was-d-a-millin-the-eponym-of-the-millin-series">Who was D.A. Millin, the eponym of the Millin Series?</a>, 2022. %H A079585 Edouard Lucas, <a href="https://www.jstor.org/stable/2369311">Théorie des Fonctions Numériques Simplement Périodiques. [Continued]</a>, American Journal of Mathematics, Vol. 1, No. 3 (1878), pp. 197-240. See p. 225, equations 125 and 127. %H A079585 Kurt Mahler, <a href="https://doi.org/10.1017/S0004972700024643">On the transcendency of the solutions of special class of functional equations</a>, Bull. Austral. Math. Soc., Vol. 13, No. 3 (1975), pp. 389-410. %H A079585 Kurt Mahler, <a href="https://doi.org/10.1017/S0004972700025430">On the transcendency of the solutions of a special class of functional equations: Corrigendum</a>, Bull. Austral. Math. Soc., Vol. 14, No. 3 (1976), pp. 477-478. %H A079585 Dale Miller, <a href="https://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/pubs.html">Publications</a>. %H A079585 D. A. Millin, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/12-3/advanced12-3.pdf">Problem H-237</a>, The Fibonacci Quarterly, Vol. 12, No. 3 (1974), p. 309; <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/14-2/advanced14-2.pdf">Sum Reciprocal!</a>, Solution to Problem H-237 by A. G. Shannon, ibid., Vol. 14, No. 2 (1976), pp. 186-187. %H A079585 Michael Penn, <a href="https://www.youtube.com/watch?v=oVUr1G9pSD4">The Millin Series (A nice Fibonacci sum)</a>, YouTube video, 2020. %H A079585 Proofwiki, <a href="https://proofwiki.org/wiki/Definition:Millin_Series">Definition:Millin Series</a>. %H A079585 Stanley Rabinowitz, <a href="https://doi.org/10.35834/1998/1003141">A note on the sum 1/w_{k2^n}</a>, Missouri J. Math. Sci., Vol. 10, No. 3 (1998), pp. 141-146. %H A079585 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MillinSeries.html">Millin Series</a>. %H A079585 <a href="/index/Al#algebraic_02">Index entries for algebraic numbers, degree 2</a> %F A079585 c = (7-sqrt(5))/2 = 4 - phi, with phi from A001622. %F A079585 c = 7/2 - 10*A020837. %F A079585 c = Sum_{k>=0} 1/F(2^k), where F(k) denotes the k-th Fibonacci number; c = Sum_{k>=0} 1/A058635(k). %F A079585 Periodic continued fraction representation is [2, 2, 1, 1, 1, 1, ....]. - _R. J. Mathar_, Mar 24 2011 %F A079585 Minimal polynomial: 11 - 7*x + x^2. - _Stefano Spezia_, Oct 16 2024 %e A079585 c = 2.3819660112501051517954131656343618822796908201942371378645513772947... %t A079585 RealDigits[4 - GoldenRatio, 10, 111][[1]] (* _Robert G. Wilson v_, Jan 31 2012 *) %o A079585 (PARI) (7 - sqrt(5))/2 \\ _Michel Marcus_, Sep 05 2017 %Y A079585 Cf. A001622, A020837, A058635. %K A079585 cons,nonn %O A079585 1,1 %A A079585 _Benoit Cloitre_, Jan 26 2003