cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079618 Triangle of coefficients in polynomials for partial sums of powers, scaled to produce integers: Sum_{i=1..m} i^(n-1) = Sum_{k=1..n} T(n,k)*m^k/A064538(n-1).

This page as a plain text file.
%I A079618 #45 Aug 22 2025 17:19:07
%S A079618 1,1,1,1,3,2,0,1,2,1,-1,0,10,15,6,0,-1,0,5,6,2,1,0,-7,0,21,21,6,0,2,0,
%T A079618 -7,0,14,12,3,-3,0,20,0,-42,0,60,45,10,0,-3,0,10,0,-14,0,15,10,2,5,0,
%U A079618 -33,0,66,0,-66,0,55,33,6,0,10,0,-33,0,44,0,-33,0,22,12,2,-691,0,4550,0,-9009,0,8580,0,-5005,0,2730,1365,210
%N A079618 Triangle of coefficients in polynomials for partial sums of powers, scaled to produce integers: Sum_{i=1..m} i^(n-1) = Sum_{k=1..n} T(n,k)*m^k/A064538(n-1).
%C A079618 Rosinger connects this sequence to Weisstein's Faulhaber's Formula page. Rosinger also discusses, without reference to OEIS, (1.1) A000217 Triangular numbers: a(n) = C(n+1,2) = n*(n+1)/2 = 0+1+2+...+n; (1.2) A000330 Square pyramidal numbers: 0^2+1^2+2^2+...+n^2 = n*(n+1)*(2n+1)/6; (1.4) A033312 n! - 1 [with different offset and the formula 1*1! + 2*2! + 3*3! + ...]; (1.4) A007489 Sum_{k=1..n} k!. - _Jonathan Vos Post_, Feb 22 2007
%D A079618 Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, p. 106, 1996.
%H A079618 R. Mestrovic, <a href="http://arxiv.org/abs/1211.4570">A congruence modulo n^3 involving two consecutive sums of powers and its applications</a>, arXiv:1211.4570 [math.NT], 2012. - From _N. J. A. Sloane_, Jan 03 2013
%H A079618 R. Mestrovic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Mestrovic/mes4.html">On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers</a>, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.
%H A079618 Elemer E. Rosinger, <a href="http://arXiv.org/abs/math.GM/0702605">Synthesizing Sums</a>, arXiv:math/0702605 [math.GM], 2007.
%H A079618 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PowerSum.html">Power Sum</a>
%H A079618 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FaulhabersFormula.html">Faulhaber's Formula.</a>
%F A079618 T(n, k) = T(n-1, k-1) * (n-1) * A064538(n-1) / (k*A064538(n-2)) for k>1; T(n, 1) = A064538(n-1) - Sum_{k=2..n} T(n, k) for n>1; T(1, 1)=1.
%e A079618 Triangle T(n, k) begins:
%e A079618 n\k 1   2   3   4   5    6   7   8   9 10 ...
%e A079618 1:  1
%e A079618 2:  1   1
%e A079618 3:  1   3   2
%e A079618 4:  0   1   2   1
%e A079618 5: -1   0  10  15   6
%e A079618 6:  0  -1   0   5   6    2
%e A079618 7:  1   0  -7   0  21   21   6
%e A079618 8:  0   2   0  -7   0   14  12   3
%e A079618 9: -3   0  20   0 -42    0  60  45  10
%e A079618 10: 0  -3   0  10   0  -14   0  15  10  2
%e A079618 ... Reformatted. - _Wolfdieter Lang_, Feb 02 2015
%e A079618 For example row n=7: partial sums of 6th powers (A000540)
%e A079618   1^6+2^6+...+m^6 = (m-7*m^3+21*m^5+21*m^6+6*m^7)/42.
%p A079618 T := proc(n, k) option remember; local A, B;
%p A079618 A := proc(n) option remember; denom((bernoulli(n+1,x)-bernoulli(n+1))/(n+1)) end:
%p A079618 B := proc(n) option remember; add(T(n,j),j=2..n) end;
%p A079618 if k>1 then T(n-1,k-1)*(n-1)*A(n-1)/(k*A(n-2)) elif n>1 then A(n-1)-B(n) else 1 fi end: seq(print(seq(T(n,k),k=1..n)),n=1..10); # _Peter Luschny_, Feb 02 2015
%p A079618 # Alternative:
%p A079618 A079618row := proc(n) bernoulli(n,x); (subs(x=x+1,%)-subs(x=1,%))/n;
%p A079618 seq(coeff(numer(%),x,k), k=1..n) end:
%p A079618 seq(A079618row(n), n=1..13); # _Peter Luschny_, Jul 14 2020
%t A079618 T[n_, k_] := T[n, k] = Module[{A, B}, A[m_] := A[m] = Denominator[ Together[ (BernoulliB[m+1, x] - BernoulliB[m+1])/(m+1)]]; B[m_] := B[m] = Sum[T[m, j], {j, 2, m}]; Which[k>1, T[n-1, k-1]*(n-1)*A[n-1]/(k*A[n-2]), n>1, A[n-1] - B[n], True, 1]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* _Jean-François Alcover_, Sep 04 2015, after _Peter Luschny_ *)
%o A079618 (PARI) row(p) = {v = vector(p+1, k, (-1)^(k==p)*binomial(p+1, k)*bernfrac(p+1-k))/(p+1); lcmd = lcm(vector(#v, k, denominator(v[k]))); v*lcmd;}
%o A079618 tabl(nn) = for (n=0, nn, print(row(n))); \\ _Michel Marcus_, Feb 16 2016
%Y A079618 Cf. A064538, A000217, A000330, A007489, A033312.
%K A079618 sign,tabl
%O A079618 1,5
%A A079618 _Henry Bottomley_, Jan 29 2003
%E A079618 Edited. Offset corrected from 0 to 1. Typo in formula corrected. - _Wolfdieter Lang_, Feb 02 2015