This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A079618 #45 Aug 22 2025 17:19:07 %S A079618 1,1,1,1,3,2,0,1,2,1,-1,0,10,15,6,0,-1,0,5,6,2,1,0,-7,0,21,21,6,0,2,0, %T A079618 -7,0,14,12,3,-3,0,20,0,-42,0,60,45,10,0,-3,0,10,0,-14,0,15,10,2,5,0, %U A079618 -33,0,66,0,-66,0,55,33,6,0,10,0,-33,0,44,0,-33,0,22,12,2,-691,0,4550,0,-9009,0,8580,0,-5005,0,2730,1365,210 %N A079618 Triangle of coefficients in polynomials for partial sums of powers, scaled to produce integers: Sum_{i=1..m} i^(n-1) = Sum_{k=1..n} T(n,k)*m^k/A064538(n-1). %C A079618 Rosinger connects this sequence to Weisstein's Faulhaber's Formula page. Rosinger also discusses, without reference to OEIS, (1.1) A000217 Triangular numbers: a(n) = C(n+1,2) = n*(n+1)/2 = 0+1+2+...+n; (1.2) A000330 Square pyramidal numbers: 0^2+1^2+2^2+...+n^2 = n*(n+1)*(2n+1)/6; (1.4) A033312 n! - 1 [with different offset and the formula 1*1! + 2*2! + 3*3! + ...]; (1.4) A007489 Sum_{k=1..n} k!. - _Jonathan Vos Post_, Feb 22 2007 %D A079618 Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, p. 106, 1996. %H A079618 R. Mestrovic, <a href="http://arxiv.org/abs/1211.4570">A congruence modulo n^3 involving two consecutive sums of powers and its applications</a>, arXiv:1211.4570 [math.NT], 2012. - From _N. J. A. Sloane_, Jan 03 2013 %H A079618 R. Mestrovic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Mestrovic/mes4.html">On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers</a>, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4. %H A079618 Elemer E. Rosinger, <a href="http://arXiv.org/abs/math.GM/0702605">Synthesizing Sums</a>, arXiv:math/0702605 [math.GM], 2007. %H A079618 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PowerSum.html">Power Sum</a> %H A079618 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FaulhabersFormula.html">Faulhaber's Formula.</a> %F A079618 T(n, k) = T(n-1, k-1) * (n-1) * A064538(n-1) / (k*A064538(n-2)) for k>1; T(n, 1) = A064538(n-1) - Sum_{k=2..n} T(n, k) for n>1; T(1, 1)=1. %e A079618 Triangle T(n, k) begins: %e A079618 n\k 1 2 3 4 5 6 7 8 9 10 ... %e A079618 1: 1 %e A079618 2: 1 1 %e A079618 3: 1 3 2 %e A079618 4: 0 1 2 1 %e A079618 5: -1 0 10 15 6 %e A079618 6: 0 -1 0 5 6 2 %e A079618 7: 1 0 -7 0 21 21 6 %e A079618 8: 0 2 0 -7 0 14 12 3 %e A079618 9: -3 0 20 0 -42 0 60 45 10 %e A079618 10: 0 -3 0 10 0 -14 0 15 10 2 %e A079618 ... Reformatted. - _Wolfdieter Lang_, Feb 02 2015 %e A079618 For example row n=7: partial sums of 6th powers (A000540) %e A079618 1^6+2^6+...+m^6 = (m-7*m^3+21*m^5+21*m^6+6*m^7)/42. %p A079618 T := proc(n, k) option remember; local A, B; %p A079618 A := proc(n) option remember; denom((bernoulli(n+1,x)-bernoulli(n+1))/(n+1)) end: %p A079618 B := proc(n) option remember; add(T(n,j),j=2..n) end; %p A079618 if k>1 then T(n-1,k-1)*(n-1)*A(n-1)/(k*A(n-2)) elif n>1 then A(n-1)-B(n) else 1 fi end: seq(print(seq(T(n,k),k=1..n)),n=1..10); # _Peter Luschny_, Feb 02 2015 %p A079618 # Alternative: %p A079618 A079618row := proc(n) bernoulli(n,x); (subs(x=x+1,%)-subs(x=1,%))/n; %p A079618 seq(coeff(numer(%),x,k), k=1..n) end: %p A079618 seq(A079618row(n), n=1..13); # _Peter Luschny_, Jul 14 2020 %t A079618 T[n_, k_] := T[n, k] = Module[{A, B}, A[m_] := A[m] = Denominator[ Together[ (BernoulliB[m+1, x] - BernoulliB[m+1])/(m+1)]]; B[m_] := B[m] = Sum[T[m, j], {j, 2, m}]; Which[k>1, T[n-1, k-1]*(n-1)*A[n-1]/(k*A[n-2]), n>1, A[n-1] - B[n], True, 1]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* _Jean-François Alcover_, Sep 04 2015, after _Peter Luschny_ *) %o A079618 (PARI) row(p) = {v = vector(p+1, k, (-1)^(k==p)*binomial(p+1, k)*bernfrac(p+1-k))/(p+1); lcmd = lcm(vector(#v, k, denominator(v[k]))); v*lcmd;} %o A079618 tabl(nn) = for (n=0, nn, print(row(n))); \\ _Michel Marcus_, Feb 16 2016 %Y A079618 Cf. A064538, A000217, A000330, A007489, A033312. %K A079618 sign,tabl %O A079618 1,5 %A A079618 _Henry Bottomley_, Jan 29 2003 %E A079618 Edited. Offset corrected from 0 to 1. Typo in formula corrected. - _Wolfdieter Lang_, Feb 02 2015