This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A079651 #23 Jul 20 2025 18:02:43 %S A079651 7,11,17,41,47,71,1117,1171,1447,1471,1741,1747,1777,4111,4177,4441, %T A079651 4447,7177,7411,7417,7477,7717,7741,11117,11171,11177,11411,11447, %U A079651 11471,11717,11777,14177,14411,14447,14717,14741,14747,14771,17117,17417 %N A079651 Primes having only {1, 4, 7} as digits. %C A079651 The number of decimal digits of a(n) is never divisible by 3. - _Robert Israel_, May 22 2014 %C A079651 The smallest prime using only all three straight digits is a(9) = 1447 (see Prime Curios! link). - _Bernard Schott_, Sep 08 2023 %H A079651 Robert Israel, <a href="/A079651/b079651.txt">Table of n, a(n) for n = 1..10000</a> %H A079651 Chris K. Caldwell and G. L. Honaker, Jr., <a href="https://t5k.org/curios/page.php?short=1447">1447</a>, Prime Curios! [Gupta] %H A079651 <a href="/index/Pri#PrimesWithDigits">Index to entries for primes with digits in a given set</a> %e A079651 17 is a term because it is a prime and consists of straight digits 1 and 7 only. %p A079651 f:= proc(x) local n,d,t,i,a; %p A079651 n:= floor(log[3]((2*x+3))); %p A079651 if n mod 3 = 0 then return 0 fi; %p A079651 d:=x - (3^n - 3)/2; %p A079651 t:= 0; %p A079651 for i from 0 to n-1 do %p A079651 a:= d mod 3; %p A079651 t:= t + (3*a+1)*10^i; %p A079651 d:= (d-a)/3; %p A079651 od: %p A079651 t %p A079651 end proc: %p A079651 select(isprime, map(f, [$1..1000])); # _Robert Israel_, May 22 2014 %t A079651 Select[Prime[Range[2000]], Union[ Join[ IntegerDigits[ # ], {1, 4, 7}]] == {1, 4, 7} &] %o A079651 (PARI) straight(n)=my(t);while(n,t=n%10;if(t!=1&&t!=4&&t!=7,return(0));n\=10);!!t %o A079651 select(straight, primes(1000)) \\ _Charles R Greathouse IV_, Sep 25 2012 %Y A079651 Cf. A028373. %K A079651 base,nonn %O A079651 1,1 %A A079651 _Shyam Sunder Gupta_, Jan 23 2003 %E A079651 Corrected and extended by _Robert G. Wilson v_, Jan 24 2003