A079683 Order of Burnside group B(6,n) of exponent 6 and rank n.
1, 6, 227442304239437611008
Offset: 0
References
- M. Hall, Jr., The Theory of Groups, Macmillan, 1959, Chap. 18.
- W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Wiley, 1966, see p. 380.
Links
- S. V. Ivanov, On the Burnside problem for groups of even exponent, Proc. Internat. Congress of Mathematicians, Vol. II (Berlin, 1998). Doc. Math. 1998, Extra Vol. II, 67-75.
- J. J. O'Connor and E. F. Robertson, History of the Burnside Problem
Programs
-
Maple
B6n:=proc(n) local a,b,c; b:=1+(n-1)*2^n; c:=n+binomial(n,2)+binomial(n,3); a:=1+(n-1)*3^c; 2^a*3^(b+binomial(b,2)+binomial(b,3)); end; # N. J. A. Sloane, Jan 12 2016
Formula
The formula for a(n) was found by Marshall Hall, Jr.: a(n) = 2^i 3^(j + (j choose 2) + (j choose 3)) where i = 1 + (n-1)3^(n + (n choose 2) + (n choose 3)) and j = 1 + (n-1)2^n. (See also the Maple code.)
Extensions
Entry revised by N. J. A. Sloane, Jan 12 2016 and Jan 15 2016
Comments