A079759 Let b(0)=0. For n >= 1, b(n) is the least k > b(n-1)+1 such that k divides (k-1)!/b(n-1)!, and a(n) = (b(n)-1)!/(b(n-1)!*b(n)).
1, 20, 4620, 12697776, 159845400, 941432800, 158800433792, 1895312483064000, 3438271897004237230080, 933561026438040, 2562849175892544, 640904462719404383808000, 1528364130975, 2352733350786, 959393282698730880000, 6142080926952
Offset: 1
Keywords
Examples
a(1) = 1*2*3*4*5/6 = 20, a(2) = 7*8*9*10*11/12 = 4620, a(3) = 13*14*15*16*17*18*19/20 = 12697776, a(4) = 159845400 = 21*22*...*27/28.
Links
- Robert Israel, Table of n, a(n) for n = 1..10001 (corrected by Robert Israel, Jan 20 2019)
Programs
-
Maple
t:= 0: for n from 1 to 30 do p:= t+1; for j from t+2 while not (p/j)::integer do p:= p*j od; A[n]:= p/j; t:= j; od: seq(A[i],i=1..30); # Robert Israel, Jul 16 2018
-
Mathematica
a[1] = 1; t = 0; nmax = 16; For[n = 1, n <= nmax, n++, p = t+1; For[j = t+2, Not[IntegerQ[p/j]], j++, p = p*j]; a[n+1] = p/j; t = j]; Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Mar 25 2019, after Robert Israel *)
Extensions
More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com) and Sascha Kurz, Jan 12 2003
Edited by N. J. A. Sloane, Nov 04 2018 at the suggestion of Georg Fischer. This entry now contains the merger of two identical sequences submitted by the same author.
Comments