cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079810 Sums of diagonals (upward from left to right) of the triangle shown in A079809.

This page as a plain text file.
%I A079810 #12 Dec 13 2023 08:32:14
%S A079810 1,1,5,3,8,8,16,12,21,21,33,27,40,40,56,48,65,65,85,75,96,96,120,108,
%T A079810 133,133,161,147,176,176,208,192,225,225,261,243,280,280,320,300,341,
%U A079810 341,385,363,408,408,456,432,481,481,533,507,560,560,616,588,645,645
%N A079810 Sums of diagonals (upward from left to right) of the triangle shown in A079809.
%H A079810 G. C. Greubel, <a href="/A079810/b079810.txt">Table of n, a(n) for n = 1..1000</a>
%H A079810 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,2,-2,0,0,-1,1).
%F A079810 a(4k) = 3k^2. a(4k+1) = a(4k+2) = 3k^2+4k+1. a(4k+3) = 3k^2+8k+5.
%F A079810 From _Chai Wah Wu_, Feb 03 2021: (Start)
%F A079810 a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) - a(n-8) + a(n-9) for n > 9.
%F A079810 G.f.: x*(1 + 4*x^2 - 2*x^3 + 3*x^4)/((1 - x)^3*(1 + x)^2*(1 + x^2)^2). (End)
%F A079810 From _G. C. Greubel_, Dec 12 2023: (Start)
%F A079810 a(n) = (1/32)*( (6*n^2 + 14*n + 5) - (-1)^n*(10*n + 9) + 2*((3 - i)*(-i)^n + (3 + i)*i^n) - 8*(-1)^floor(n/2)*floor((n+2)/2) ).
%F A079810 E.g.f.: 4*(1-x)*cos(x) - 4*(2-x)*sin(x) + 2*(3*x^2 + 15*x - 2)*cosh(x) 2*(3*x^2 + 5*x + 7)*sinh(x). (End)
%e A079810 a(7) = T(7,1) + T(6,2) + T(5,3) + T(4,4) = 7 + 2 + 3 + 4 = 16.
%t A079810 LinearRecurrence[{1,0,0,2,-2,0,0,-1,1}, {1,1,5,3,8,8,16,12,21}, 70] (* _G. C. Greubel_, Dec 12 2023 *)
%o A079810 (Magma) R<x>:=PowerSeriesRing(Integers(), 71); Coefficients(R!( x*(1+4*x^2-2*x^3+3*x^4)/((1-x)*(1-x^4)^2) )); // _G. C. Greubel_, Dec 12 2023
%o A079810 (SageMath)
%o A079810 def A079810_list(prec):
%o A079810     P.<x> = PowerSeriesRing(ZZ, prec)
%o A079810     return P( x*(1+4*x^2-2*x^3+3*x^4)/((1-x)*(1-x^4)^2) ).list()
%o A079810 a=A079810_list(71); a[1:] # _G. C. Greubel_, Dec 12 2023
%Y A079810 Cf. A079808, A079809, A079811, A092542.
%K A079810 nonn
%O A079810 1,3
%A A079810 _Amarnath Murthy_, Feb 10 2003
%E A079810 Edited by _David Wasserman_, May 11 2004