This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A079823 #24 Aug 27 2025 21:20:14 %S A079823 1,2,43,75,1186,16129,22171310,29231814,3730241915,4638312520, %T A079823 564739322621,675748403327,79685849413428,92806959504235, %U A079823 10693817060514336,121107948271615244,137122108958372625345,1541381231099684736354,1721551391241109785746455 %N A079823 Consider the triangle shown below; sequence contains the concatenation of numbers read at a 45-degree angle upwards with horizontal beginning with the first term of a row. %C A079823 1 %C A079823 2 3 %C A079823 4 5 6 %C A079823 7 8 9 10 %C A079823 11 12 13 14 15 %C A079823 16 17 18 19 20 21 %C A079823 ... %C A079823 a(n) also is the concatenation of the terms of the n-th row of A056536. - _Michel Marcus_, Dec 14 2023 %H A079823 G. C. Greubel, <a href="/A079823/b079823.txt">Table of n, a(n) for n = 1..395</a> %p A079823 read("transforms"): %p A079823 A079823aux := proc(n,k) %p A079823 A000124(n)+k ; %p A079823 end proc: %p A079823 A079823 := proc(n) %p A079823 local L,k,n0 ; %p A079823 n0 := n-1 ; %p A079823 L := [] ; %p A079823 for k from 0 do %p A079823 if k > n0-k then %p A079823 break; %p A079823 end if; %p A079823 L := [op(L),A079823aux(n0-k,k)] ; %p A079823 end do: %p A079823 digcatL(L) ; %p A079823 end proc: # _R. J. Mathar_, Aug 23 2012 %p A079823 # second Maple program: %p A079823 T:= (i, j)-> i*(i-1)/2+j: %p A079823 a:= n-> parse(cat(seq(T(n-j,j+1), j=0..(n-1)/2))): %p A079823 seq(a(n), n=1..23); # _Alois P. Heinz_, Aug 03 2022 %t A079823 Table[FromDigits[Join@@IntegerDigits[Table[Binomial[n-k+1,2] + k, {k, Ceiling[n/2]}]]], {n,30}] (* _G. C. Greubel_, Dec 13 2023 *) %Y A079823 Cf. A056536, A079808, A079824. %K A079823 base,nonn,changed %O A079823 1,2 %A A079823 _Amarnath Murthy_, Feb 11 2003 %E A079823 More terms from Jason D. W. Taff (jtaff(AT)jburroughs.org), Oct 31 2003 %E A079823 Corrected by _Philippe Deléham_, Feb 16 2004