cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079861 a(n) is the number of occurrences of 7's in the palindromic compositions of 2*n-1, or also, the number of occurrences of 8's in the palindromic compositions of 2*n.

This page as a plain text file.
%I A079861 #38 Jun 04 2025 15:35:48
%S A079861 10,22,48,104,224,480,1024,2176,4608,9728,20480,43008,90112,188416,
%T A079861 393216,819200,1703936,3538944,7340032,15204352,31457280,65011712,
%U A079861 134217728,276824064,570425344,1174405120,2415919104,4966055936
%N A079861 a(n) is the number of occurrences of 7's in the palindromic compositions of 2*n-1, or also, the number of occurrences of 8's in the palindromic compositions of 2*n.
%C A079861 This sequence is part of a family of sequences, namely R(n,k), the number of k's in palindromic compositions of n. See also A057711, A001792, A078836, A079861, A079862. General formula: R(n,k) = 2^(floor(n/2) - k) * (2 + floor(n/2) - k) if n and k have different parity and R(n,k) = 2^(floor(n/2) - k) * (2 + floor(n/2) - k + 2^(floor((k+1)/2 - 1)) otherwise, for n >= 2*k.
%H A079861 Vincenzo Librandi, <a href="/A079861/b079861.txt">Table of n, a(n) for n = 8..1000</a>
%H A079861 Phyllis Chinn, Ralph Grimaldi and Silvia Heubach, <a href="http://www.calstatela.edu/sites/default/files/users/u1231/Papers/freqs.pdf">The Frequency of Summands of a Particular Size in Palindromic Compositions</a>, Ars Combin., Vol. 69 (2003), pp. 65-78.
%H A079861 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-4).
%F A079861 a(n) = (2+n)*2^(n-8).
%F A079861 a(n) = 2*A111297(n-6). - _Colin Barker_, Dec 16 2014
%F A079861 a(n) = 4*a(n-1) - 4*a(n-2). - _Colin Barker_, Dec 16 2014
%F A079861 G.f.: -2*x^8*(9*x-5) / (2*x-1)^2. - _Colin Barker_, Dec 16 2014
%F A079861 From _Amiram Eldar_, Jan 13 2021: (Start)
%F A079861 Sum_{n>=8} 1/a(n) = 1024*log(2) - 447047/630.
%F A079861 Sum_{n>=8} (-1)^n/a(n) = 261617/630 - 1024*log(3/2). (End)
%e A079861 a(8)=10 since the palindromic compositions of 15 that contain a 7 are 7+1+7, 4+7+4, 1+3+7+3+1, 3+1+7+1+3, 2+2+7+2+2, 1+1+1+1+7+1+1+1+1, 1+1+2+7+2+1+1, 1+2+1+7+1+2+1 and 2+1+1+7+1+1+2, for a total of 10 7's.
%t A079861 Table[(2 + i)*2^(i - 8), {i, 8, 50}]
%t A079861 LinearRecurrence[{4,-4},{10,22},50] (* _Harvey P. Dale_, Jun 04 2025 *)
%o A079861 (Magma) [(2+n)*2^(n-8) : n in [8..40]]; // _Vincenzo Librandi_, Sep 22 2011
%o A079861 (PARI) Vec(-2*x^8*(9*x-5)/(2*x-1)^2 + O(x^100)) \\ _Colin Barker_, Dec 16 2014
%Y A079861 Cf. A057711, A001792, A079859, A061256, A079862, A079863, A111297.
%K A079861 easy,nonn
%O A079861 8,1
%A A079861 Silvia Heubach (sheubac(AT)calstatela.edu), Jan 11 2003