cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079863 a(n) is the number of occurrences of 11s in the palindromic compositions of m=2*n-1 = the number of occurrences of 12s in the palindromic compositions of m=2*n.

This page as a plain text file.
%I A079863 #20 Nov 05 2020 13:26:28
%S A079863 34,70,144,296,608,1248,2560,5248,10752,22016,45056,92160,188416,
%T A079863 385024,786432,1605632,3276800,6684672,13631488,27787264,56623104,
%U A079863 115343360,234881024,478150656,973078528,1979711488,4026531840,8187281408,16642998272,33822867456
%N A079863 a(n) is the number of occurrences of 11s in the palindromic compositions of m=2*n-1 = the number of occurrences of 12s in the palindromic compositions of m=2*n.
%C A079863 This sequence is part of a family of sequences, namely R(n,k), the number of ks in palindromic compositions of n. See also A057711, A001792, A078836, A079861, A079862. General formula: R(n,k)=2^(floor(n/2) - k) * (2 + floor(n/2) - k) if n and k have different parity and R(n,k)=2^(floor(n/2) - k) * (2 + floor(n/2) - k + 2^(floor((k+1)/2 - 1)) otherwise, for n >= 2k.
%H A079863 Colin Barker, <a href="/A079863/b079863.txt">Table of n, a(n) for n = 12..1000</a>
%H A079863 P. Chinn, R. Grimaldi and S. Heubach, <a href="https://www.calstatela.edu/sites/default/files/users/u1231/Papers/freqs.pdf">The frequency of summands of a particular size in Palindromic Compositions</a>, Ars Combin. 69 (2003), 65-78.
%H A079863 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-4).
%F A079863 a(n) = (n+22)*2^(n-12).
%F A079863 From _Colin Barker_, Sep 29 2015: (Start)
%F A079863 a(n) = 4*a(n-1) - 4*a(n-2) for n>13.
%F A079863 G.f.: -2*x^12*(33*x-17) / (2*x-1)^2.
%F A079863 (End)
%e A079863 a(12) = 34 since the palindromic compositions of 23 that contain a 11 are 11+1+11 and the 32 compositions of the form c+11+(reverse of c), where c represents a composition of 6.
%t A079863 Table[(22 + i)*2^(i - 12), {i, 12, 50}]
%t A079863 LinearRecurrence[{4,-4},{34,70},30] (* _Harvey P. Dale_, Jan 30 2017 *)
%o A079863 (PARI) Vec(-2*x^12*(33*x-17)/(2*x-1)^2 + O(x^100)) \\ _Colin Barker_, Sep 29 2015
%o A079863 (PARI) a(n)=(n+22)<<(n-12) \\ _Charles R Greathouse IV_, Sep 29 2015
%Y A079863 Cf. A057711, A001792, A079859, A078836, A079861, A079862.
%K A079863 easy,nonn
%O A079863 12,1
%A A079863 Silvia Heubach (sheubac(AT)calstatela.edu), Jan 11 2003