cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A248944 T(n,k)=Number of length n arrays x(i), i=1..n with x(i) in i..i+k and no value appearing more than 1 time.

Original entry on oeis.org

2, 3, 3, 4, 7, 4, 5, 13, 14, 5, 6, 21, 36, 26, 6, 7, 31, 76, 90, 46, 7, 8, 43, 140, 246, 212, 79, 8, 9, 57, 234, 566, 738, 478, 133, 9, 10, 73, 364, 1146, 2104, 2108, 1044, 221, 10, 11, 91, 536, 2106, 5150, 7364, 5794, 2227, 364, 11, 12, 111, 756, 3590, 11196, 21652, 24720
Offset: 1

Views

Author

R. H. Hardin, Oct 17 2014

Keywords

Comments

Table starts
..2...3....4......5......6.......7........8........9........10........11
..3...7...13.....21.....31......43.......57.......73........91.......111
..4..14...36.....76....140.....234......364......536.......756......1030
..5..26...90....246....566....1146.....2106.....3590......5766......8826
..6..46..212....738...2104....5150....11196....22162.....40688.....70254
..7..79..478...2108...7364...21652....55532...127604....268108....523244
..8.133.1044...5794..24720...86608...260720...693552...1666000...3675680
..9.221.2227..15458..80196..334072..1173240..3598120...9856552..24553080
.10.364.4664..40296.253072.1249768..5112544.17990600..56010096.157175032
.11.596.9627.103129.780902.4557284.21670160.87396728.308055528.971055240

Crossrefs

Column 1 is A000027(n+1)
Column 2 is A001924(n+1)
Column 3 is A079922
Column 4 is A079923
Column 5 is A079924
Column 6 is A079925
Column 7 is A079926
Row 1 is A000027(n+1)
Row 2 is A002061(n+1)
Row 3 is A061989(n+3)
Row 4 is A079909
Row 5 is A079910
Row 6 is A079911
Row 7 is A079912

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2)
k=2: a(n) = 3*a(n-1) -2*a(n-2) -a(n-3) +a(n-4)
k=3: a(n) = 4*a(n-1) -4*a(n-2) -2*a(n-4) +4*a(n-5) -a(n-8)
k=4: [order 16]
k=5: [order 32]
k=6: [order 63]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + n + 1
n=3: a(n) = n^3 + 3*n
n=4: a(n) = n^4 - 2*n^3 + 9*n^2 - 8*n + 6 for n>1
n=5: a(n) = n^5 - 5*n^4 + 25*n^3 - 55*n^2 + 80*n - 46 for n>1
n=6: a(n) = n^6 - 9*n^5 + 60*n^4 - 225*n^3 + 555*n^2 - 774*n + 484 for n>3
n=7: a(n) = n^7 - 14*n^6 + 126*n^5 - 700*n^4 + 2625*n^3 - 6342*n^2 + 9072*n - 5840 for n>4
Showing 1-1 of 1 results.