This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A079912 #27 Dec 03 2021 15:44:11 %S A079912 1,8,133,1044,5794,24720,86608,260720,693552,1666000,3675680,7549488, %T A079912 14591440,26770832,46955760,79197040,129067568,204062160,314062912, %U A079912 471875120,693838800,1000520848,1417492880,1976199792,2714924080 %N A079912 Solution to the Dancing School Problem with 7 girls and n+7 boys: f(7,n). %C A079912 f(g,h) = per(B), the permanent of the (0,1)-matrix B of size g X g+h with b(i,j)=1 if and only if i <= j <= i+h. See A079908 for more information. %C A079912 For fixed g, f(g,n) is polynomial in n for n >= g-2. See reference. %H A079912 Colin Barker, <a href="/A079912/b079912.txt">Table of n, a(n) for n = 0..1000</a> %H A079912 Jaap Spies, <a href="http://www.nieuwarchief.nl/serie5/pdf/naw5-2006-07-4-283.pdf">Dancing School Problems</a>, Nieuw Archief voor Wiskunde 5/7 nr. 4, Dec 2006, pp. 283-285. %H A079912 Jaap Spies, <a href="http://www.jaapspies.nl/mathfiles/dancingschool.pdf">Dancing School Problems, Permanent solutions of Problem 29</a>. %H A079912 Jaap Spies, <a href="http://www.jaapspies.nl/oeis/a079912.sage">Sage program for computing A079912</a>. %H A079912 Jaap Spies, <a href="http://www.jaapspies.nl/mathfiles/dancing.sage">Sage program for computing the polynomial a(n)</a>. %H A079912 Jaap Spies, <a href="http://www.jaapspies.nl/bookb5.pdf">A Bit of Math, The Art of Problem Solving</a>, Jaap Spies Publishers (2019). %H A079912 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,8,-1). %F A079912 a(0) = 1, a(1) = 8, a(2) = 133, a(3) = 1044, a(4) = 5794; for n>4, a(n) = n^7-14*n^6+126*n^5-700*n^4+2625*n^3-6342*n^2+9072*n-5840. %F A079912 G.f.: -(46*x^12 -340*x^11 +931*x^10 -1808*x^9 +727*x^8 -1400*x^7 -1506*x^6 -656*x^5 -788*x^4 -148*x^3 -97*x^2 -1) / (x -1)^8. - _Colin Barker_, Jan 04 2015 %p A079912 seq(n^7-14*n^6+126*n^5-700*n^4+2625*n^3-6342*n^2+9072*n-5840,n=5..20); %t A079912 Join[{1,8,133,1044,5794},Table[n^7-14n^6+126n^5-700n^4+2625n^3- 6342n^2 +9072n-5840,{n,5,30}]] (* _Harvey P. Dale_, May 03 2011 *) %o A079912 (PARI) Vec(-(46*x^12 -340*x^11 +931*x^10 -1808*x^9 +727*x^8 -1400*x^7 -1506*x^6 -656*x^5 -788*x^4 -148*x^3 -97*x^2 -1) / (x -1)^8 + O(x^100)) \\ _Colin Barker_, Jan 04 2015 %Y A079912 Cf. A079908-A079928. %K A079912 nonn,easy %O A079912 0,2 %A A079912 _Jaap Spies_, Jan 28 2003 %E A079912 More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 06 2003