cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079919 Solution to the Dancing School Problem with 14 girls and n+14 boys: f(14,n).

This page as a plain text file.
%I A079919 #18 Dec 03 2021 17:08:01
%S A079919 1,15,4163,158364,3904260,60560175,671224467,5697401802,38983643908,
%T A079919 223245029176,1100925116264,4780871048064,18612106195456,
%U A079919 65909241461760,214868401724416,650515953570304,1842743223078144,4916155345428736,12422627638293760,29881211844270336,68721268507385344,151698799246127104
%N A079919 Solution to the Dancing School Problem with 14 girls and n+14 boys: f(14,n).
%C A079919 f(g,h) = per(B), the permanent of the (0,1)-matrix B of size g X g+h with b(i,j)=1 if and only if i <= j <= i+h. See A079908 for more information.
%C A079919 For fixed g, f(g,n) is polynomial in n for n >= g-2. See reference.
%H A079919 Jaap Spies, <a href="http://www.nieuwarchief.nl/serie5/pdf/naw5-2006-07-4-283.pdf">Dancing School Problems</a>, Nieuw Archief voor Wiskunde 5/7 nr. 4, Dec 2006, pp. 283-285.
%H A079919 Jaap Spies, <a href="http://www.jaapspies.nl/mathfiles/dancingschool.pdf">Dancing School Problems, Permanent solutions of Problem 29</a>.
%H A079919 Jaap Spies, <a href="http://www.jaapspies.nl/mathfiles/dancing.sage">Sage program "dance" for computing the polynomial a(n)</a>.
%F A079919 a(n) = n^14 - 77*n^13 + 3094*n^12 - 83083*n^11 + 1637636*n^10 - 24785761*n^9 + 294696402*n^8 - 2779448529*n^7 + 20797459683*n^6 - 122389753486*n^5 + 555826054784*n^4 - 1883902028008*n^3 + 4494445040176*n^2 - 6742111050752*n + 4789534153984 for n >= 12. - _Georg Fischer_, Apr 27 2021 (polynomial computed by the program in links)
%Y A079919 Cf. A079908-A079928.
%K A079919 nonn,easy
%O A079919 0,2
%A A079919 _Jaap Spies_, Jan 28 2003
%E A079919 Corrected by _Jaap Spies_, Feb 01 2004
%E A079919 a(13)-a(21) from _Georg Fischer_, Apr 27 2021