This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A079939 #14 Aug 31 2025 18:24:19 %S A079939 1,3,7,14,39,78,394,1001,2002,3003,9545,10546,27634,154257,398959, %T A079939 797918,1196877,1595836,5394991,5793950,15786014,130087267,312129649, %U A079939 624259298 %N A079939 Greedy frac multiples of e: a(1)=1, Sum_{n>0} frac(a(n)*e)=1. %C A079939 The n-th greedy frac multiple of x is the smallest integer that does not cause Sum_{k=1..n} frac(a(k)*x) to exceed unity; an infinite number of terms appear as the denominators of the convergents to the continued fraction of x. %e A079939 a(4) = 14 since frac(1x) + frac(3x) + frac(7x) + frac(14x) < 1, while frac(1x) + frac(3x) + frac(7x) + frac(k*x) > 1 for all k>7 and k<14. %p A079939 Digits := 100: a := []: s := 0: x := exp(1.0): for n from 1 to 1000000 do: temp := evalf(s+frac(n*x)): if (temp<1.0) then a := [op(a),n]: print(n): s := s+evalf(frac(n*x)): fi: od: a; %Y A079939 Cf. A007677 (denominators of convergents to e), A079934, A079937, A079940. %K A079939 more,nonn,changed %O A079939 1,2 %A A079939 _Benoit Cloitre_ and _Paul D. Hanna_, Jan 21 2003 %E A079939 a(15)-a(16) from Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 30 2003 %E A079939 a(17)-a(24) from _Sean A. Irvine_, Aug 30 2025