This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A079946 #45 Jul 19 2024 18:34:12 %S A079946 6,12,14,24,26,28,30,48,50,52,54,56,58,60,62,96,98,100,102,104,106, %T A079946 108,110,112,114,116,118,120,122,124,126,192,194,196,198,200,202,204, %U A079946 206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246 %N A079946 Numbers k whose binary expansion begins with two or more 1's and ends with at least one 0. %C A079946 a(n) = b(n+1), with b(2n) = 2b(n), b(2n+1) = 2b(n)+2+4[n==0]. - _Ralf Stephan_, Oct 11 2003 %H A079946 Yifan Xie, <a href="/A079946/b079946.txt">Table of n, a(n) for n = 1..10001</a> (first 1000 terms from Harvey P. Dale) %H A079946 Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">Numerical analogues of Aronson's sequence</a>, J. Integer Seqs., Vol. 6 (2003), #03.2.2. %H A079946 Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, <a href="https://arxiv.org/abs/math/0305308">Numerical analogues of Aronson's sequence</a>, arXiv:math/0305308 [math.NT], 2003. %H A079946 Ralf Stephan, <a href="/somedcgf.html">Some divide-and-conquer sequences ...</a> %H A079946 Ralf Stephan, <a href="/A079944/a079944.ps">Table of generating functions</a> %F A079946 a(n) = 2^floor(log_2(4*n))+2*n. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 22 2003 %F A079946 a(n) = (2^(floor(log_2(n))+1)+n)*2. - _Klaus Brockhaus_, Feb 23 2003 %F A079946 a(2n) = 2a(n), a(2n+1) = 2a(n) + 2 + 4[n==0]. Twice A004755. - _Ralf Stephan_, Oct 12 2003 %p A079946 A079946 := n -> 2*(2^(1+A000523(n))+n); %t A079946 Table[Union[FromDigits[Join[{1,1},#,{0}],2]&/@Tuples[{1,0},n]],{n,0,5}]//Flatten (* _Harvey P. Dale_, Jan 16 2018 *) %o A079946 (PARI) for(n=0,6, for(k=2^(n-1),2^n-1,print1((2^n+k)*2,","))) %o A079946 (PARI) for(n=1,59,print1((2^(floor(log(n)/log(2))+1)+n)*2,",")) %o A079946 (PARI) a(n) = n*2 + 4<<logint(n, 2); \\ _Ruud H.G. van Tol_, May 10 2024 %o A079946 (Python) %o A079946 def A079946(n): return n+(1<<n.bit_length())<<1 # _Chai Wah Wu_, Jul 13 2022 %Y A079946 A004755 = union of this and A080565. A057547(n) = a(A014486(n)) for n >= 1. %K A079946 nonn,easy,base %O A079946 1,1 %A A079946 _N. J. A. Sloane_, Feb 21 2003 %E A079946 Definition clarified by _N. J. A. Sloane_, May 10 2024