This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A079948 #16 Sep 02 2018 08:23:55 %S A079948 3,2,1,1,1,2,2,2,1,1,1,1,1,1,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,2,2, %T A079948 2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, %U A079948 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A079948 First differences of A079000. %C A079948 Alternate description of sequence: start with a(1)=3; apply 1->2, 2->11, 3->21; iterate. - _Matthew Vandermast_, Mar 08 2003 %D A079948 N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110. %H A079948 B. Cloitre, N. J. A. Sloane and M. J. Vandermast, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL6/Cloitre/cloitre2.html">Numerical analogues of Aronson's sequence</a>, J. Integer Seqs., Vol. 6 (2003), #03.2.2. %H A079948 B. Cloitre, N. J. A. Sloane and M. J. Vandermast, <a href="https://arxiv.org/abs/math/0305308">Numerical analogues of Aronson's sequence</a>, arXiv:math/0305308 [math.NT], 2003. %H A079948 N. J. A. Sloane, <a href="http://neilsloane.com/doc/g4g7.pdf">Seven Staggering Sequences</a>. %F A079948 After first two terms, a run of length 3*2^k 1's followed by a run of length 3*2^k 2's, for k = 0, 1, ... %F A079948 a(n) = floor(log_2(8*(floor((n+3)/3))/3)) - floor(log_2(floor((n+3)/3))) for n>2; with a(1)=3 and a(2)=2. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 22 2003 %F A079948 Also a(n) = A079882(A002264(n+3)) for n>2, where A002264=floor(n/3). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 22 2003 %t A079948 b[1] = 1; b[n_] := (k = Floor[Log[2, (n+3)/6]]; j = n - (9*2^k-3); 12*2^k - 3 + 3*j/2 + Abs[j]/2); Array[b, 106] // Differences (* _Jean-François Alcover_, Sep 02 2018 *) %K A079948 nonn %O A079948 1,1 %A A079948 _N. J. A. Sloane_, Feb 22 2003