cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079951 Number of primes p with prime(n) == 1 (modulo 2*p).

This page as a plain text file.
%I A079951 #12 Jan 10 2019 02:21:21
%S A079951 0,0,1,1,1,2,1,1,1,2,2,2,2,2,1,2,1,3,2,2,2,2,1,2,2,2,2,1,2,2,2,2,2,2,
%T A079951 2,2,3,1,1,2,1,3,2,2,2,2,3,2,1,3,2,2,3,1,1,1,2,2,3,3,2,2,2,2,3,2,3,3,
%U A079951 1,3,2,1,2,3,2,1,2,3,2,3,2,4,2,2,2,2,2,3,3,3,1,1,1,2,2,1,2,3,2,3,3,2,1,2,3
%N A079951 Number of primes p with prime(n) == 1 (modulo 2*p).
%F A079951 a(n) = A001221(floor(A000040(n)/2)). - _Jon Maiga_, Jan 06 2019
%e A079951 n=6: prime(6)=13 and 13 mod (2*2) = 1, 13 mod (2*3) = 1, 13 mod(2*5) = 3, 13 mod (2*7) = 13, therefore a(6)=2.
%t A079951 Table[PrimeNu[Floor[Prime[n]/2]], {n, 105}] (* _Jon Maiga_, Jan 06 2019 *)
%o A079951 (PARI) a(n) = omega(prime(n)\2); \\ _Michel Marcus_, Jan 06 2019
%Y A079951 Cf. A001221, A079950, A079952.
%K A079951 nonn
%O A079951 1,6
%A A079951 _Reinhard Zumkeller_, Jan 19 2003