This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A079999 #19 Aug 20 2025 18:51:42 %S A079999 1,0,0,0,1,1,1,1,1,4,4,5,7,10,16,22,29,40,60,84,118,165,230,330,466, %T A079999 653,919,1297,1831,2585,3640,5124,7233,10201,14380,20272,28572,40289, %U A079999 56816,80096,112912,159196,224449,316456,446164,629004,886821,1250329,1762801 %N A079999 Number of permutations (p(1),p(2),...,p(n)) of (1,2,...,n) such that p(i)-i is in {-2,-1,3} for all i=1,...,n. %D A079999 D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970. %H A079999 Michael A. Allen and Kenneth Edwards, <a href="https://doi.org/10.1080/03081087.2022.2107979">Connections between two classes of generalized Fibonacci numbers squared and permanents of (0,1) Toeplitz matrices</a>, Linear and Multilinear Algebra, 72:13 (2024), 2091-2103. %H A079999 Michael A. Allen and Kenneth Edwards, <a href="https://doi.org/10.1080/00150517.2025.24921984">Identities relating permanents of some classes of (0,1) Toeplitz matrices to generalized Fibonacci numbers</a>, Fibonacci Quarterly, 63:2 (2025), 163-177. %H A079999 Vladimir Baltic, <a href="http://pefmath.etf.rs/vol4num1/AADM-Vol4-No1-119-135.pdf">On the number of certain types of strongly restricted permutations</a>, Applicable Analysis and Discrete Mathematics, 4:1 (2010), 119-135. %H A079999 Kenneth Edwards and Michael A. Allen, <a href="https://doi.org/10.1016/j.dam.2015.02.004">Strongly restricted permutations and tiling with fences</a>, Discrete Applied Mathematics, 187 (2015), 82-90. %H A079999 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1,1,2,1,0,-1,0,-1). %F A079999 Recurrence: a(n) = a(n-3) + a(n-4) + 2*a(n-5) + a(n-6) - a(n-8) - a(n-10) for n>=10. %F A079999 G.f.: (1 - x^3 - x^5)/(1 - x^3 - x^4 - 2*x^5 - x^6 + x^8 + x^10). %t A079999 LinearRecurrence[{0,0,1,1,2,1,0,-1,0,-1},{1,0,0,0,1,1,1,1,1,4},50] (* _Harvey P. Dale_, Dec 12 2024 *) %Y A079999 Cf. A002524-A002529, A072827, A072850-A072856, A079955-A080014, A376743. %K A079999 nonn,easy %O A079999 0,10 %A A079999 _Vladimir Baltic_, Feb 10 2003