cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080036 a(n) = n + round(sqrt(2*n)) + 1.

This page as a plain text file.
%I A080036 #50 Jul 02 2025 10:00:29
%S A080036 1,3,5,6,8,9,10,12,13,14,15,17,18,19,20,21,23,24,25,26,27,28,30,31,32,
%T A080036 33,34,35,36,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,57,58,
%U A080036 59,60,61,62,63,64,65,66,68,69,70,71,72,73,74,75,76,77,78,80,81,82,83,84,85,86
%N A080036 a(n) = n + round(sqrt(2*n)) + 1.
%C A080036 Sequence (without first term) is the complement of A000124 (central polygonal numbers). - _Jaroslav Krizek_, Jun 16 2009
%C A080036 a(n) is the Ramsey core number rc(2,n).  The Ramsey core number rc(s,t) is the smallest n such that for all edge 2-colorings of K_n, either the factor induced by the first color contains an s-core or the second factor contains a t-core.  (A k-core is a subgraph with minimum degree at least k.) - _Allan Bickle_, Mar 29 2023
%D A080036 R. Klein and J. Schönheim, Decomposition of K_{n} into degenerate graphs, In Combinatorics and Graph Theory Hefei 6-27, April 1992. World Scientific. Singapore, New Jersey, London, Hong Kong, 141-1
%H A080036 G. C. Greubel, <a href="/A080036/b080036.txt">Table of n, a(n) for n = 0..1000</a>
%H A080036 Allan Bickle, <a href="https://allanbickle.files.wordpress.com/2016/05/dissertation4.pdf">The k-Cores of a Graph</a>, Ph.D. Dissertation, Western Michigan University, 2010.
%H A080036 Allan Bickle, <a href="https://www.dmgt.uz.zgora.pl/publish/pdf.php?doi=1637">Structural results on maximal k-degenerate graphs</a>, Discuss. Math. Graph Theory 32 4 (2012), 659-676.
%H A080036 Allan Bickle, <a href="https://doi.org/10.20429/tag.2024.000105">A Survey of Maximal k-degenerate Graphs and k-Trees</a>, Theory and Applications of Graphs 0 1 (2024) Article 5.
%H A080036 Benoit Cloitre, <a href="https://arxiv.org/abs/2506.18103">A study of a family of self-referential sequences</a>, arXiv:2506.18103 [math.GM], 2025. See p. 10.
%H A080036 Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Cloitre/cloitre2.html">Numerical analogues of Aronson's sequence</a>, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
%H A080036 Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, <a href="https://arxiv.org/abs/math/0305308">Numerical analogues of Aronson's sequence</a>, arXiv:math/0305308 [math.NT], 2003.
%H A080036 Sascha Stoll, <a href="https://limejuicestudio.com/pdf/Final_Master_thesis.pdf">On Subgraphs With Minimum Degree Restrictions</a>, Master’s Thesis, Karlsruhe Institute of Technology, 2019.
%F A080036 a(0)=1, a(1)=3; for n>1, a(n)=a(n-1)+1 if n is already in the sequence, a(n)=a(n-1)+2 otherwise.
%F A080036 a(n) = A003057(n+1) + n. - _Jaroslav Krizek_, Jun 16 2009
%F A080036 a(n) = ceiling(n + 1/2 + sqrt(2*(n-1)+9/4)). - _Allan Bickle_, Mar 29 2023
%e A080036 For order 5, one of the two factors has at least 5 edges, and so contains a cycle.   For order 4, K_4  decomposes into two paths.  Thus rc(2,2)=5.
%t A080036 Table[(n + Round[Sqrt[2 n]] + 1), {n, 0, 80}] (* _Vincenzo Librandi_, Jan 20 2015 *)
%o A080036 (PARI) A080036(n)=n+round(sqrt(2*n))+1 \\ _M. F. Hasler_, Jan 13 2015
%o A080036 (Magma) [n + Round(Sqrt(2*n)) + 1: n in [0..80]]; // _Vincenzo Librandi_, Jan 20 2015
%o A080036 (Python)
%o A080036 from math import isqrt
%o A080036 def A080036(n): return (k:=isqrt(m:=n<<1))+int((m<<2)>(k<<2)*(k+1)+1)+n+1 # _Chai Wah Wu_, Jul 26 2022
%Y A080036 Equals A014132 + 1. Cf. A080037.
%Y A080036 Different from A105206.
%Y A080036 Cf. A361261 (array of rc(s,t)), A361684 (rc(n,n)).
%K A080036 nonn
%O A080036 0,2
%A A080036 _N. J. A. Sloane_, Mar 14 2003