This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A080108 #52 Nov 26 2024 03:35:06 %S A080108 1,2,6,23,104,537,3100,19693,136064,1013345,8076644,68486013, %T A080108 614797936,5818490641,57846681092,602259154853,6548439927680, %U A080108 74180742421185,873588590481988,10674437936521069,135097459659312176 %N A080108 a(n) = Sum_{k=1..n} k^(n-k)*binomial(n-1,k-1). %C A080108 Row sums of triangle A154372. Example: a(3)=1+12+9+1=23. From A152818. - _Paul Curtz_, Jan 08 2009 %C A080108 Number of pointed set partitions of a pointed set k[1...k...n] with a prescribed point k. - _Gus Wiseman_, Sep 27 2015 %C A080108 With offset 0, a(n) is the number of partial functions (A000169) from [n]->[n] such that every element in the domain of definition is mapped to a fixed point. This implies a(n) is the number of idempotent partial functions Cf. A121337. - _Geoffrey Critzer_, Aug 07 2016 %H A080108 Vincenzo Librandi, <a href="/A080108/b080108.txt">Table of n, a(n) for n = 1..200</a> %F A080108 G.f.: Sum_{k>0} x^k/(1-k*x)^k. %F A080108 E.g.f. (for offset 0): exp(x*(1+exp(x))). - _Vladeta Jovovic_, Aug 25 2003 %F A080108 a(n) = A185298(n)/n. %e A080108 G.f. = x + 2*x^2 + 6*x^3 + 23*x^4 + 104*x^5 + 537*x^6 + 3100*x^7 + 19693*x^8 + ... %e A080108 The a(4) = 23 pointed set partitions of 1[1 2 3 4] are 1[1[1 2 3 4]], 1[1[1] 2[2 3 4]], 1[1[1] 3[2 3 4]], 1[1[1] 4[2 3 4]], 1[1[1 2] 3[3 4]], 1[1[1 2] 4[3 4]], 1[1[1 3] 2[2 4]], 1[1[1 3] 4[2 4]], 1[1[1 4] 2[2 3]], 1[1[1 4] 3[2 3]], 1[1[1 2 3] 4[4]], 1[1[1 2 4] 3[3]], 1[1[1 3 4] 2[2]], 1[1[1] 2[2] 3[3 4]], 1[1[1] 2[2] 4[3 4]], 1[1[1] 2[2 3] 4[4]], 1[1[1] 2[2 4] 3[3]], 1[1[1] 3[3] 4[2 4]], 1[1[1] 3[2 3] 4[4]], 1[1[1 2] 3[3] 4[4]], 1[1[1 3] 2[2] 4[4]], 1[1[1 4] 2[2] 3[3]], 1[1[1] 2[2] 3[3] 4[4]]. %t A080108 Table[Sum[k^(n-k) Binomial[n-1,k-1],{k,n}],{n,30}] (* _Harvey P. Dale_, Aug 19 2012 *) %t A080108 Table[SeriesCoefficient[Sum[x^k/(1-k*x)^k,{k,0,n}],{x,0,n}], {n,1,20}] (* _Vaclav Kotesovec_, Aug 06 2014 *) %t A080108 CoefficientList[Series[E^(x*(1+E^x)), {x, 0, 20}], x] * Range[0, 20]! (* _Vaclav Kotesovec_, Aug 06 2014 *) %o A080108 (PARI) a(n)=sum(k=1,n, k^(n-k)*binomial(n-1,k-1)) \\ _Anders Hellström_, Sep 27 2015 %o A080108 (Magma) [(1/n)*(&+[Binomial(n,k)*k^(n-k+1): k in [0..n]]): n in [1..30]]; // _G. C. Greubel_, Jan 22 2023 %o A080108 (SageMath) %o A080108 def A080108(n): return (1/n)*sum(binomial(n,k)*k^(n-k+1) for k in range(n+1)) %o A080108 [A080108(n) for n in range(1,31)] # _G. C. Greubel_, Jan 22 2023 %Y A080108 First column of array A098697. %Y A080108 Cf. A152818, A185298, A262671. %K A080108 nonn %O A080108 1,2 %A A080108 _Vladeta Jovovic_, Mar 15 2003