A080109 Square of primes of the form 4k+1 (A002144).
25, 169, 289, 841, 1369, 1681, 2809, 3721, 5329, 7921, 9409, 10201, 11881, 12769, 18769, 22201, 24649, 29929, 32761, 37249, 38809, 52441, 54289, 58081, 66049, 72361, 76729, 78961, 85849, 97969, 100489, 113569, 121801, 124609, 139129
Offset: 1
Examples
a(7) = 2809 is the hypotenuse of triangles 1241, 2520, 2809 and 1484, 2385, 2809, and only of these. a(7) = 53^2 = 2809 = 45^2 + (4*7)^2, and this is the only way. - _Wolfdieter Lang_, Jan 13 2015
References
- L. E. Dickson, History of the Theory of Numbers, Volume II, Diophantine Analysis. Carnegie Institution Publ. No. 256, Vol II, Washington, DC, 1920, p. 227.
- Morris Kline, Mathematical Thought from Ancient to Modern Times, 1972, pp. 275-276.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Jorma K. Merikoski, Pentti Haukkanen, and Timo Tossavainen, The congruence x^n = -a^n (mod m): Solvability and related OEIS sequences, Notes. Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 516-529. See p. 521.
Crossrefs
Programs
-
Mathematica
Select[4 Range[96] + 1, PrimeQ]^2 (* Michael De Vlieger, Dec 27 2016 *)
-
PARI
fermat(n) = { for(x=1,n, y=4*x+1; if(isprime(y),print1(y^2" ")) ) }
Formula
From Amiram Eldar, Dec 02 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = A243380
Product_{n>=1} (1 - 1/a(n)) = A088539. (End)
Extensions
Edited: Name changed, part of old name as comment. Comments added and changed. Dickson reference added. - Wolfdieter Lang, Jan 13 2015
Comments