cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080149 Numbers k such that k^2 + 1 and k^2 + 3 are both prime.

This page as a plain text file.
%I A080149 #41 Sep 07 2023 14:13:40
%S A080149 2,4,10,14,74,94,130,134,146,160,230,256,326,340,350,406,430,440,470,
%T A080149 584,634,686,700,704,784,860,920,986,1054,1070,1156,1210,1324,1340,
%U A080149 1354,1366,1394,1420,1456,1460,1564,1700,1784,1816,1876,2006,2080,2096,2174
%N A080149 Numbers k such that k^2 + 1 and k^2 + 3 are both prime.
%C A080149 Hardy and Littlewood conjecture that this sequence is infinite. This sequence is the intersection of A005574 (k such that k^2 + 1 is prime) and A049422 (k such that k^2 + 3 is prime).
%C A080149 From _Jacques Tramu_, Sep 10 2018: (Start)
%C A080149 a(10000)    =     2473624;  C = 2.91596513
%C A080149 a(100000)   =    35866246;  C = 2.70591741
%C A080149 a(1000000)  =   483764726;  C = 2.53454683
%C A080149 a(2000000)  =  1049178316;  C = 2.49209641
%C A080149 a(3000000)  =  1647417724;  C = 2.46880647
%C A080149 a(4000000)  =  2267125384;  C = 2.45259161
%C A080149 a(5000000)  =  2903162576;  C = 2.44036006
%C A080149 a(6000000)  =  3551848640;  C = 2.43024082
%C A080149 a(7000000)  =  4212006124;  C = 2.42214552
%C A080149 a(8000000)  =  4881390700;  C = 2.41510010
%C A080149 a(9000000)  =  5559542740;  C = 2.40915933
%C A080149 a(10000000) =  6245573750;  C = 2.40405768
%C A080149 a(20000000) = 13393786900;  C = 2.36959294
%C A080149 a(30000000) = 20908970800;  C = 2.35131696
%C A080149 a(40000000) = 28659267134;  C = 2.33835867
%C A080149 a(50000000) = 36590858294;  C = 2.32865934
%C A080149 C is the quotient a(n) / (n * log(n) * log(n)). (End)
%D A080149 P. Ribenboim, "The New Book of Prime Number Records," Springer-Verlag, 1996, p. 408.
%H A080149 Zak Seidov, <a href="/A080149/b080149.txt">Table of n, a(n) for n = 1..32898</a> (terms < 10^7, first 1000 terms from T. D. Noe)
%H A080149 G. H. Hardy and J. E. Littlewood, <a href="https://doi.org/10.1007/BF02403921">Some problems of 'Partitio numerorum'; III: On the expression of a number as a sum of primes</a>, Acta Math., Vol. 44, No. 1 (1923), pp. 1-70.
%F A080149 Conjecture: a(n) is asymptotic to c*n*log(n)^2 with c around 2.9... - _Benoit Cloitre_, Apr 16 2004
%e A080149 10 is in this sequence because 101 and 103 are both prime.
%t A080149 lst={}; Do[If[PrimeQ[m^2+1]&&PrimeQ[m^2+3], AppendTo[lst, m]], {m, 3000}]; lst
%t A080149 okQ[n_]:=Module[{n2=n^2},PrimeQ[n2+1]&&PrimeQ[n2+3]]; Select[Range[2200], okQ]  (* _Harvey P. Dale_, Apr 21 2011 *)
%t A080149 Select[Range[2500],AllTrue[#^2+{1,3},PrimeQ]&] (* _Harvey P. Dale_, Sep 07 2023 *)
%o A080149 (PARI) isA080149(n) = isprime(n^2+1) && isprime(n^2+3) \\ _Michael B. Porter_, Mar 22 2010
%Y A080149 Cf. A005574, A049422, A145824.
%K A080149 easy,nonn
%O A080149 1,1
%A A080149 _T. D. Noe_, Jan 30 2003