cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080164 Wythoff difference array, D={d(i,j)}, by antidiagonals.

This page as a plain text file.
%I A080164 #29 Feb 05 2021 22:27:34
%S A080164 1,2,3,5,7,4,13,18,10,6,34,47,26,15,8,89,123,68,39,20,9,233,322,178,
%T A080164 102,52,23,11,610,843,466,267,136,60,28,12,1597,2207,1220,699,356,157,
%U A080164 73,31,14,4181,5778,3194,1830,932,411,191,81,36,16,10946,15127,8362,4791,2440
%N A080164 Wythoff difference array, D={d(i,j)}, by antidiagonals.
%C A080164 D is an interspersion formed by differences between Wythoff pairs in the Wythoff array W={w(i,j)}=A035513 (indexed so that i and j start at 1): d(i,j)=w(i,2j)-w(i,2j-1).
%C A080164 The difference between adjacent column terms is a Fibonacci number: d(i+1,j)-d(i,j) is F(2j) or F(2j+1).
%C A080164 Every term in column 1 of W is in column 1 of D; moreover, in row i of D, every term except the first is in row i of W.
%C A080164 Let W' be the array remaining when all the odd-numbered columns of W are removed from W. The rank array of W' (obtained by replacing each w'(i,j) by its rank when all the numbers w'(h,k) are arranged in increasing order) is D.
%C A080164 Let W" be the array remaining when all the even-numbered columns of W are removed from W; the rank array of W" is D.
%C A080164 Let D' be the array remaining when column 1 of D is removed; the rank array of D' is D.
%C A080164 Let E be the array {e(i,j)} given by e(i,j)=d(i,2j)-d(i,2j-1); the rank array of E is D.
%C A080164 D is the dispersion of the sequence u given by u(n)=n+floor(n*x), where x=(golden ratio); that is, D is the dispersion of the upper Wythoff sequence, A001950.  For a discussion of dispersions, see A191426.
%C A080164 In column 1, F(2n) is in position F(2n-1)  - _Clark Kimberling_, Jul 15 2016
%D A080164 Clark Kimberling, The Wythoff difference array, in Applications of Fibonacci Numbers, vol.10, Proceedings of the Eleventh International Conference on Fibonacci Numbers and Their Applications, William Webb, editor, Congressus Numerantium, Winnipeg, Manitoba 194 (2009) 153-158.
%H A080164 Eric DuchĂȘne, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, and Urban Larsson, <a href="https://books.google.com/books?hl=en&amp;lr=lang_en&amp;id=i7WQDwAAQBAJ&amp;oi=fnd&amp;pg=PA65">Wythoff Visions</a>, Games of No Chance 5 (2017) Vol. 70, See p. 65.
%H A080164 Clark Kimberling, <a href="http://faculty.evansville.edu/ck6/integer/intersp.html">Interspersions</a>
%H A080164 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary Equations</a>, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
%H A080164 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Kimberling/kimber12.html">Lucas Representations of Positive Integers</a>, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.
%H A080164 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A080164 d(i, j)=[i*tau]F(2j-1)+(i-1)F(2j-2), where F=A000045 (Fibonacci numbers). d(i, j)=[tau*d(i, j-1)]+d(i, j-1) for i>=2. d(i, j)=3d(i, j-1)-d(i, j-2) for i>=3.
%e A080164 Northwest corner:
%e A080164 1   2   5   13   34   89
%e A080164 3   7   18  47   123  322
%e A080164 4   10  26  68   178  466
%e A080164 6   15  39  102  267  699
%e A080164 8   20  52  136  356  932
%e A080164 9   23  60  157  411  1076
%t A080164 (* program generates the dispersion array T of the complement of increasing sequence f[n] *)
%t A080164 r = 40; r1 = 12; (* r=# rows of T, r1=# rows to show *)
%t A080164 c = 40; c1 = 12; (* c=# cols of T, c1=# cols to show *)
%t A080164 x = 1 + GoldenRatio; f[n_] := Floor[n*x]
%t A080164 (* f(n) is complement of column 1 *)
%t A080164 mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
%t A080164 rows = {NestList[f, 1, c]};
%t A080164 Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
%t A080164 t[i_, j_] := rows[[i, j]];
%t A080164 TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
%t A080164 (* A080164 as an array *)
%t A080164 Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]]
%t A080164 (* A080164 as a sequence *)
%t A080164 (* Program by _Peter J. C. Moses_, Jun 01 2011, added here by _Clark Kimberling_, Jun 03 2011 *)
%Y A080164 Cf. A035513, A000201, A001950, A000045.
%K A080164 nonn,tabl
%O A080164 1,2
%A A080164 _Clark Kimberling_, Feb 08 2003