A080169 Numbers that are cubes of primes of the form 4k+1 (A002144).
125, 2197, 4913, 24389, 50653, 68921, 148877, 226981, 389017, 704969, 912673, 1030301, 1295029, 1442897, 2571353, 3307949, 3869893, 5177717, 5929741, 7189057, 7645373, 12008989, 12649337, 13997521, 16974593, 19465109, 21253933
Offset: 1
Examples
a(2) = 2197 is the hypotenuse of the three triangles 825, 2035, 2197; 845, 2028, 2197; 1547, 1560, 2197. a(2) = 9^2 + 46^2 = 39^2 + 26^2, and these are the only decompositions. - _Wolfdieter Lang_, Jan 15 2015
References
- L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, Publ. No. 256, Vol. II, Washington D.C., 1920, p. 227.
- Morris Kline, Mathematical Thought from Ancient to Modern Times, 1972, pp. 275-276.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Prime[Range[60]], Mod[#, 4] == 1 &]^3 (* Amiram Eldar, Dec 02 2022 *)
-
PARI
fermat(n) = { for(x=1,n, y=4*x+1; if(isprime(y),print1(y^3" ")) ) }
Formula
a(n) = A002144(n)^3, n >= 1.
Product_{n>=1} (1 - 1/a(n)) = A334425. - Amiram Eldar, Dec 02 2022
Extensions
Edited: New name, part of old one now as a comment. Dickson reference, formula and cross references added. - Wolfdieter Lang, Jan 15 2015
Comments