This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A080193 #23 Sep 18 2024 11:53:50 %S A080193 5,10,15,20,25,30,40,45,50,60,75,80,90,100,120,125,135,150,160,180, %T A080193 200,225,240,250,270,300,320,360,375,400,405,450,480,500,540,600,625, %U A080193 640,675,720,750,800,810,900,960,1000,1080,1125,1200,1215,1250,1280,1350 %N A080193 5-smooth numbers which are not 3-smooth. %C A080193 Numbers of the form 2^r*3^s*5^t with r, s >= 0, t > 0. %C A080193 That is, 5-smooth numbers which are multiples of 5. - _Charles R Greathouse IV_, Mar 19 2015 %H A080193 Amiram Eldar, <a href="/A080193/b080193.txt">Table of n, a(n) for n = 1..10000</a> %F A080193 From _Amiram Eldar_, Nov 10 2020: (Start) %F A080193 a(n) = 5 * A051037(n). %F A080193 Sum_{n>=1} 1/a(n) = 3/4. (End) %e A080193 15 = 3*5 is a term but 18 = 2*3^2 is not. %t A080193 Select[Range[1000], FactorInteger[#][[-1, 1]] == 5 &] (* _Amiram Eldar_, Nov 10 2020 *) %o A080193 (PARI) {m=1440; z=[]; for(r=0,floor(log(m)/log(2)),a=2^r; for(s=0,floor(log(m/a)/log(3)),b=a*3^s; for(t=1, floor(log(m/b)/log(5)),z=concat(z,b*5^t)))); z=vecsort(z); for(i=1,length(z),print1(z[i],","))} %o A080193 (PARI) list(lim)=my(v=List(),x=1,y,z); while((x*=5)<=lim, y=x/3; while((y*=3)<=lim, z=y/2; while((z*=2)<=lim, listput(v, z)))); Set(v) \\ _Charles R Greathouse IV_, Mar 19 2015 %o A080193 (Python) %o A080193 from sympy import integer_log %o A080193 def A080193(n): %o A080193 def bisection(f,kmin=0,kmax=1): %o A080193 while f(kmax) > kmax: kmax <<= 1 %o A080193 while kmax-kmin > 1: %o A080193 kmid = kmax+kmin>>1 %o A080193 if f(kmid) <= kmid: %o A080193 kmax = kmid %o A080193 else: %o A080193 kmin = kmid %o A080193 return kmax %o A080193 def f(x): %o A080193 c = n+x %o A080193 for i in range(integer_log(x,5)[0]+1): %o A080193 for j in range(integer_log(y:=x//5**i,3)[0]+1): %o A080193 c -= (y//3**j).bit_length() %o A080193 return c %o A080193 return bisection(f,n,n)*5 # _Chai Wah Wu_, Sep 16 2024 %o A080193 (Python) # faster for initial segment of sequence %o A080193 import heapq %o A080193 from itertools import islice %o A080193 def A080193gen(): # generator of terms %o A080193 v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3, 5] %o A080193 while True: %o A080193 v = heapq.heappop(h) %o A080193 if v != oldv: %o A080193 yield 5*v %o A080193 oldv = v %o A080193 for p in psmooth_primes: %o A080193 heapq.heappush(h, v*p) %o A080193 print(list(islice(A080193gen(), 55))) # _Michael S. Branicky_, Sep 18 2024 %Y A080193 Cf. A051037, A003586. %K A080193 easy,nonn %O A080193 1,1 %A A080193 _Klaus Brockhaus_, Feb 10 2003